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Effective Quantum Field Theory ideology

4+ gauge symmetry
4+ field content

4+ local effective lagrangian

x renormalizability needn’t be fundamental
but just accidental

* global symmetries low energy features



The Standard Model as eftective field theory

with fundamental scale A2, > 1TeV
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A, > TeV (pointlike limit ) nicely accounts for ‘what we see’
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Hierarchy see-saw

Standard Model up to some A% > 1TeV
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Natural SM : A2 < 1TeV
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The two possible microphysics scenarios

I. The SM is the correct descriptionup to A, > TeV

* B, L anc

| Flavor: beautifully in accord with observation

e Hierarcl

y remains a mystery, probably hinting that the question was not

correctly posed

* anthropic principle
e failure of effective field theory ideology (UV/IR connection)

I1. The SM is not the correct description already at Ay ~ 1TeV

* In the correct theory the hierarchy problem does not even arise (naturalness)
* What about B, L and Flavor? In all models not nearly as nice as in SM



A high scale scenario

o £d=4 experimental success (some 2- 3-0 glitches here and there)

¢ 0-QCD and Dark Matter =? high scale axion| f, ~ 10'? GeV

e gauge couplings ready to unify around |10'° < M < Mpianck

1
873

In p

2

CCHH

® neutrino masses —_— M, ~

(v
Z A ~ 1 14
A A 0 GeV

* RG-evolution of SM couplings, including )\, remarkably do

not require lower scales
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the fact that the SM lives dangerously perhaps points to
an anthropic selection of parameters

though it is hard to tell



SM couplings

Elias-Miro, Espinosa,Giudice, Isidori, Riotto, Strumia 11
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SM couplings
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30 bands in
M, =1734+0.7 GeV (gray)
a,(M7) =0.1184 + 0.0007(red)
M, =125.7 + 0.3 GeV (blue)
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The two natural scenarios for electroweak symmetry breaking

Elementary Higgs exists No elemer.ltar y Higgs
but a symmetry eXI1StS
protects 1ts mass
Technicolor,

Composite Light Higgs

Supersymmetric Models (and its holograms)

Large Extra Dimensions: exciting, fantastic, great, but not very
plausible without extra mass scale separation

Plus a list of not even wrong scenarios...



Flavor ?



Supersymmetry: the existence of scalar matter fields introduces
a myriad of d <4 terms violating F, B and L

LI = m2.Q1Q; + A Y Q:DjHy + NijxU; DDy, + .

Naive Composite Higgs (TC) : the Yukawa themselves are d > 4

3

2Y) ' 1 T ) ' — .. UF

Yii HQ1LQpr — Yi; Az (YU)QLQ% mj = Y AZ
F

A must be not too far above weak scale: expect unwanted FCNC



In all natural models, extra assumptions (often clever) are needed to meet
flavor physics constraints

Approaches

pick a subgroup of U(3)e x U(3)y x U(3)p x U(3) x U(3)k
Symmetry pick a set of spurions to break it
construct a lagrangian using the selection rules

mass mixing hierarchy from radiative corrections

Dynamics flavor from geography in extr: t .
flavor from partial composite
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What naturalness demands



A supersoft models: Higgs mass parameter fully saturated by IR physics

edirac gauginos in supersymmetry
*general composite Higgs

tuning

400 GeV) :

A soft models: Higgs mass logarithmically sensitive to UV

* MSSM and its extensions with high scale mediation

| ( 125 GeV> ’
tuning -

My ~ TNy ™~ T,
h VA m,




The more natural the theory the more the Higgs rates deviate from SM



new states

SM + Higgs

The more natural the theory the more the Higgs rates deviate from SM



Supersymmetry

*higgs couplings
.EWPT (617 €2, 63)
b — s

Compositeness
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o LWPT (61, €2, 63)
°*h — s
* direct searches (susy)

imply °O <1 (10%)

in most cases, O(1) deviations in Higgs rates were already disfavored



Perspective on Supersymmetry

before and after LHC 7/8

once upon a time, expectation in the less clever models was
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Beftore LHC: natural and simple spectrum possible within NMSSM



After LHC

* situation only slightly worse with 1y, ~2 125 GeV  Hall, Pinner, Ruderman 11

* GUT perturbativity borderline, but needn’t worry too much
see Barbieri et al 2013

* direct searches have however eliminated the natural region of the most
straighforward NMSSM scenario (in particular flavor universal sfermion
masses)

1 TeV
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MSSM: simplest scenarios were under pressure already before LHC

NMSSM: simplest scenarios came under pressure with LHC

What about more ‘structured’ models, those that stick to
naturalness like a mussel to her reef?



not-so-un-Natural SUSY
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mj < 500 GeV some other physics (ex NMSSM) takes care of Mp,

consider all possible ways to suppress the signal:

Dirac gluino, RPV, compressed spectrum,...
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LSP mass [GeV]
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notice Br(4t) < 0.25 in relevant scenario:

, Barbieri, Pappadopulo ‘o9
15-20% reduction of bound
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however the other channels (tttb, ttbb) add to same signal
expect compensation, in the end bound should not change much



what about some help from baryonic RPV?
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forget about majorana gluino and go to dirac: supersoft stop masses
zoom on stops and higgsinos

t production Status: March 26, 2013
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impressive but significant natural regions with squashed
spectra remain




probably these regions can already be more significantly constrained by

Delgado, Giudice, Isidori,

Pierini, Strumia ‘13
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what about RPV decaying

g
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what about topless
gluino decays’?
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ATLAS & CMS are hunting down Supersymmetry in nooks and crannies

Looking forward to next run and to even more clever analyses

Too early tough to fully overthrow naturalness in favor
of scenarios like, for instance, mini-split SUSY
but pressure is clearly building up

anyway, wait to hear Nima



Compositeness

H
Flavor: only option is partial compositeness ¥ I ;
FCNC m, = 10 —20TeV
without any additional symmetry odims e > 40 TeV

with combination of SU(2)’s and SU(3) can bring scale down to ~TeV

Redi ’12
Babrbieri, Buttazzo, Sala, Straub, Tesi '12



generic

top
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expectations from naturalness
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Electroweak Precision Tests

optimist

'\/\/\;\,%“ MWL AS, AT Y < 005 (0.2)

2

pessimist

W, Z |4 R m2
W 2
YA NN AS ~ —5- my 2 2—3TeV
AVAVAVAU.T)TLTIT AVAVAVAY m%/, 4

EWPT already imply some tuning

technical naturalness demands structural complexity (my > myp )



Higgs couplings

~ — S ().2 from EWPT

wait for more integrated luminosity to break new grounds



De Simone, Matsedonkyi, Rattazzi , Wulzer '12

this is a very significant direct ‘test’ of naturalness
but result not fully unexpected in view of LEP/etc...
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Vector Resonances

qg; N
> = = < dw — 9gv
q gv

2 6
2T
o () (22V)
gv my,

* resonances couple ‘superweakly’ to light fermions

* significantly different from weakly coupled W’ and Z’
* LHC bound still below 2 TeV for gy >3

* wait for LHC13 to break new ground

upcoming ‘theorists analysis’ : Contino, Grojean, Pappadopulo, Thamm, Torre, Wulzer



Higgzoology



A Mass

new states

SM + Higgs

Can use effective lagrangian to describe deviations from SM

= simple parametrization encompassing a large class of models
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cy > 1 only if 3 scalar of electric charge 2

cp, > 1, ¢ <1 MSSM

cp, < 1, ¢ > 1 NMSSM dominated quartic

cy,cr <1 Cg,Cry ~ 0 Composite Higgs
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Welcome Higgs !!




The precision frontier

single 92 02
Higgs ;33 ---------- measures Al PZ <  fine tuning
physics M NP
EWPT HL-LHC ILC-LEPpone
109% 5% 1%

precision Higgs physics breaks ground in the test of naturalness
though it can only give us indirect clues

semidirect %%:’ . .
. at CLIC sensitive to tuning of ~1%

clues O



The energy frontier
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Summary

* discovery of Higgs boson with rates in agreement with SM within
the present precision of 30% is far from unexpected: it is basically
a corollary of results of LEP/Tevatron/B-factories

e direct searches are directly pushing several scenarios (especially in
SUSY) into 1% tuning grounds, though that is basically were the
simplest (and maybe nicest) models were already expected by
indirect reasoning (ex, MSSM with flavor universal soft terms)

e LHC searches are now also putting significant pressure on cleverly
natural models, though regions with moderate tuning are not ruled
out yet

* Refined analyses & LHC13 can break grounds on those regions and
perform a comprehensive test of naturalness

e HL-LHC will break grounds in EW physics by testing Higgs rates
at, so it seems, §%



