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New AMS results 

“ere's no such thing as disappointing.” 
              (Sam Ting)  



New AMS results 

10 GeV the positron fraction decreases with increasing
energy as expected from the secondary production of
cosmic rays by collision with the interstellar medium.
The positron fraction is steadily increasing from 10 to
!250 GeV. This is not consistent with only the secondary
production of positrons [17]. The behavior above 250 GeV
will become more transparent with more statistics which
will also allow improved treatment of the systematics.

Table I (see also [13]) also presents the contribution of
individual sources to the systematic error for different bins
which are added in quadrature to arrive at the total system-
atic uncertainty. As seen, the total systematic error at the
highest energies is dominated by the uncertainty in the
magnitude of the charge confusion.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in Fig. 5 and in Table I (see also [13]).

The observation of the positron fraction increase with
energy has been reported by earlier experiments: TS93
[18], Wizard/CAPRICE [19], HEAT [20], AMS-01 [21],
PAMELA [22], and Fermi-LAT [23]. The most recent
results are presented in Fig. 5 for comparison. The accu-
racy of AMS-02 and high statistics available enable the
reported AMS-02 positron fraction spectrum to be clearly
distinct from earlier work. The AMS-02 spectrum has the
unique resolution, statistics, and energy range to provide
accurate information on new phenomena.
The accuracy of the data (Table I and [13]) enables us to

investigate the properties of the positron fraction with
different models. We present here the results of comparing
our data with a minimal model, as an example. In this
model the eþ and e# fluxes,!eþ and!e# , respectively, are
parametrized as the sum of individual diffuse power law
spectra and the contribution of a single common source
of e$:

!eþ ¼ CeþE
#!eþ þ CsE

#!se#E=Es ; (1)

!e# ¼ Ce#E
#!e# þ CsE

#!se#E=Es (2)

(with E in GeV), where the coefficients Ceþ and Ce#

correspond to relative weights of diffuse spectra for posi-
trons and electrons, respectively, and Cs to the weight of
the source spectrum; !eþ , !e# , and !s are the correspond-
ing spectral indices; and Es is a characteristic cutoff energy
for the source spectrum. With this parametrization the
positron fraction depends on five parameters. A fit to the
data in the energy range 1–350 GeV based on the number
of events in each bin yields a "2=d:f: ¼ 28:5=57 and the
following: !e# # !eþ ¼ #0:63$ 0:03, i.e., the diffuse
positron spectrum is softer, that is, less energetic with
increasing energy, than the diffuse electron spectrum;
!e# # !s ¼ 0:66$ 0:05, i.e., the source spectrum is
harder than the diffuse electron spectrum; Ceþ=Ce# ¼
0:091$ 0:001, i.e., the weight of the diffuse positron flux
amounts to !10% of that of the diffuse electron flux;
Cs=Ce# ¼ 0:0078$ 0:0012, i.e., the weight of the com-
mon source constitutes only !1% of that of the diffuse
electron flux; and 1=Es ¼ 0:0013$ 0:0007 GeV#1, corre-
sponding to a cutoff energy of 760þ1000

#280 GeV. The fit is
shown in Fig. 6 as a solid curve. The agreement between
the data and the model shows that the positron fraction
spectrum is consistent with e$ fluxes each of which is the
sum of its diffuse spectrum and a single common power
law source. No fine structures are observed in the data. The
excellent agreement of this model with the data indicates
that the model is insensitive to solar modulation effects
[24] during this period. Indeed, fitting over the energy
ranges from 0.8–350 GeV to 6.0–350 GeV does not change
the results nor the fit quality. Furthermore, fitting the data
with the same model extended to include different solar
modulation effects on positrons and electrons yields simi-
lar results. This study also shows that the slope of the
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FIG. 4 (color). (a) Stability of the measurement in the energy
range 83.2–100 GeVover wide variations of the cuts fitted with a
Gaussian of width 1.1%. (b) The positron fraction shows no
correlation with the number of selected positrons.
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FIG. 5 (color). The positron fraction compared with the most
recent measurements from PAMELA [22] and Fermi-LAT [23].
The comparatively small error bars for AMS are the quadratic
sum of the statistical and systematic uncertainties (see Table I
and [13]), and the horizontal positions are the centers of
each bin.
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“e positron fraction is turning over, 
so it must be dark matter.” 



“It’s turning over, so it must be DM.” 

10 GeV the positron fraction decreases with increasing
energy as expected from the secondary production of
cosmic rays by collision with the interstellar medium.
The positron fraction is steadily increasing from 10 to
!250 GeV. This is not consistent with only the secondary
production of positrons [17]. The behavior above 250 GeV
will become more transparent with more statistics which
will also allow improved treatment of the systematics.

Table I (see also [13]) also presents the contribution of
individual sources to the systematic error for different bins
which are added in quadrature to arrive at the total system-
atic uncertainty. As seen, the total systematic error at the
highest energies is dominated by the uncertainty in the
magnitude of the charge confusion.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in Fig. 5 and in Table I (see also [13]).

The observation of the positron fraction increase with
energy has been reported by earlier experiments: TS93
[18], Wizard/CAPRICE [19], HEAT [20], AMS-01 [21],
PAMELA [22], and Fermi-LAT [23]. The most recent
results are presented in Fig. 5 for comparison. The accu-
racy of AMS-02 and high statistics available enable the
reported AMS-02 positron fraction spectrum to be clearly
distinct from earlier work. The AMS-02 spectrum has the
unique resolution, statistics, and energy range to provide
accurate information on new phenomena.
The accuracy of the data (Table I and [13]) enables us to

investigate the properties of the positron fraction with
different models. We present here the results of comparing
our data with a minimal model, as an example. In this
model the eþ and e# fluxes,!eþ and!e# , respectively, are
parametrized as the sum of individual diffuse power law
spectra and the contribution of a single common source
of e$:

!eþ ¼ CeþE
#!eþ þ CsE

#!se#E=Es ; (1)

!e# ¼ Ce#E
#!e# þ CsE

#!se#E=Es (2)

(with E in GeV), where the coefficients Ceþ and Ce#

correspond to relative weights of diffuse spectra for posi-
trons and electrons, respectively, and Cs to the weight of
the source spectrum; !eþ , !e# , and !s are the correspond-
ing spectral indices; and Es is a characteristic cutoff energy
for the source spectrum. With this parametrization the
positron fraction depends on five parameters. A fit to the
data in the energy range 1–350 GeV based on the number
of events in each bin yields a "2=d:f: ¼ 28:5=57 and the
following: !e# # !eþ ¼ #0:63$ 0:03, i.e., the diffuse
positron spectrum is softer, that is, less energetic with
increasing energy, than the diffuse electron spectrum;
!e# # !s ¼ 0:66$ 0:05, i.e., the source spectrum is
harder than the diffuse electron spectrum; Ceþ=Ce# ¼
0:091$ 0:001, i.e., the weight of the diffuse positron flux
amounts to !10% of that of the diffuse electron flux;
Cs=Ce# ¼ 0:0078$ 0:0012, i.e., the weight of the com-
mon source constitutes only !1% of that of the diffuse
electron flux; and 1=Es ¼ 0:0013$ 0:0007 GeV#1, corre-
sponding to a cutoff energy of 760þ1000

#280 GeV. The fit is
shown in Fig. 6 as a solid curve. The agreement between
the data and the model shows that the positron fraction
spectrum is consistent with e$ fluxes each of which is the
sum of its diffuse spectrum and a single common power
law source. No fine structures are observed in the data. The
excellent agreement of this model with the data indicates
that the model is insensitive to solar modulation effects
[24] during this period. Indeed, fitting over the energy
ranges from 0.8–350 GeV to 6.0–350 GeV does not change
the results nor the fit quality. Furthermore, fitting the data
with the same model extended to include different solar
modulation effects on positrons and electrons yields simi-
lar results. This study also shows that the slope of the
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FIG. 4 (color). (a) Stability of the measurement in the energy
range 83.2–100 GeVover wide variations of the cuts fitted with a
Gaussian of width 1.1%. (b) The positron fraction shows no
correlation with the number of selected positrons.
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FIG. 5 (color). The positron fraction compared with the most
recent measurements from PAMELA [22] and Fermi-LAT [23].
The comparatively small error bars for AMS are the quadratic
sum of the statistical and systematic uncertainties (see Table I
and [13]), and the horizontal positions are the centers of
each bin.
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“It’s turning over, so it must be DM.” 

•  power law spectrum with spectral index 
•  exponential cut-off at  
•  impulsive injection                                           ago 
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10 GeV the positron fraction decreases with increasing
energy as expected from the secondary production of
cosmic rays by collision with the interstellar medium.
The positron fraction is steadily increasing from 10 to
!250 GeV. This is not consistent with only the secondary
production of positrons [17]. The behavior above 250 GeV
will become more transparent with more statistics which
will also allow improved treatment of the systematics.

Table I (see also [13]) also presents the contribution of
individual sources to the systematic error for different bins
which are added in quadrature to arrive at the total system-
atic uncertainty. As seen, the total systematic error at the
highest energies is dominated by the uncertainty in the
magnitude of the charge confusion.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in Fig. 5 and in Table I (see also [13]).

The observation of the positron fraction increase with
energy has been reported by earlier experiments: TS93
[18], Wizard/CAPRICE [19], HEAT [20], AMS-01 [21],
PAMELA [22], and Fermi-LAT [23]. The most recent
results are presented in Fig. 5 for comparison. The accu-
racy of AMS-02 and high statistics available enable the
reported AMS-02 positron fraction spectrum to be clearly
distinct from earlier work. The AMS-02 spectrum has the
unique resolution, statistics, and energy range to provide
accurate information on new phenomena.
The accuracy of the data (Table I and [13]) enables us to

investigate the properties of the positron fraction with
different models. We present here the results of comparing
our data with a minimal model, as an example. In this
model the eþ and e# fluxes,!eþ and!e# , respectively, are
parametrized as the sum of individual diffuse power law
spectra and the contribution of a single common source
of e$:

!eþ ¼ CeþE
#!eþ þ CsE

#!se#E=Es ; (1)

!e# ¼ Ce#E
#!e# þ CsE

#!se#E=Es (2)

(with E in GeV), where the coefficients Ceþ and Ce#

correspond to relative weights of diffuse spectra for posi-
trons and electrons, respectively, and Cs to the weight of
the source spectrum; !eþ , !e# , and !s are the correspond-
ing spectral indices; and Es is a characteristic cutoff energy
for the source spectrum. With this parametrization the
positron fraction depends on five parameters. A fit to the
data in the energy range 1–350 GeV based on the number
of events in each bin yields a "2=d:f: ¼ 28:5=57 and the
following: !e# # !eþ ¼ #0:63$ 0:03, i.e., the diffuse
positron spectrum is softer, that is, less energetic with
increasing energy, than the diffuse electron spectrum;
!e# # !s ¼ 0:66$ 0:05, i.e., the source spectrum is
harder than the diffuse electron spectrum; Ceþ=Ce# ¼
0:091$ 0:001, i.e., the weight of the diffuse positron flux
amounts to !10% of that of the diffuse electron flux;
Cs=Ce# ¼ 0:0078$ 0:0012, i.e., the weight of the com-
mon source constitutes only !1% of that of the diffuse
electron flux; and 1=Es ¼ 0:0013$ 0:0007 GeV#1, corre-
sponding to a cutoff energy of 760þ1000

#280 GeV. The fit is
shown in Fig. 6 as a solid curve. The agreement between
the data and the model shows that the positron fraction
spectrum is consistent with e$ fluxes each of which is the
sum of its diffuse spectrum and a single common power
law source. No fine structures are observed in the data. The
excellent agreement of this model with the data indicates
that the model is insensitive to solar modulation effects
[24] during this period. Indeed, fitting over the energy
ranges from 0.8–350 GeV to 6.0–350 GeV does not change
the results nor the fit quality. Furthermore, fitting the data
with the same model extended to include different solar
modulation effects on positrons and electrons yields simi-
lar results. This study also shows that the slope of the
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FIG. 4 (color). (a) Stability of the measurement in the energy
range 83.2–100 GeVover wide variations of the cuts fitted with a
Gaussian of width 1.1%. (b) The positron fraction shows no
correlation with the number of selected positrons.
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FIG. 5 (color). The positron fraction compared with the most
recent measurements from PAMELA [22] and Fermi-LAT [23].
The comparatively small error bars for AMS are the quadratic
sum of the statistical and systematic uncertainties (see Table I
and [13]), and the horizontal positions are the centers of
each bin.
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“e positron fraction has 
substructure, so it must be dark 

matter.” 



“ere’s substructure, hence DM.” 

positron fraction as a function of energy decreases by an
order of magnitude from 20 to 250 GeV.

Primary sources of cosmic ray positrons and electrons
may induce some degree of anisotropy of the measured
positron to electron ratio, that is, the ratio of the positron
flux to the electron flux. Therefore, a systematic search for
anisotropies using the selected sample is performed from
16 to 350 GeV.

Arrival directions of electrons and positrons are used to
build a sky map in galactic coordinates, (b,l), containing
the number of observed positrons and electrons. The fluc-
tuations of the observed positron ratio are described by
using a spherical harmonic expansion

reðb; lÞ
hrei

# 1 ¼
X1

‘¼0

X‘

m¼#‘

a‘mY‘mð!=2# b; lÞ; (3)

where reðb; lÞ denotes the positron ratio at (b,l), hrei is the
average ratio over the sky map, Y‘m are spherical harmonic
functions, and a‘m are the corresponding weights. The
coefficients of the angular power spectrum of the fluctua-
tions are defined as

C‘ ¼
1

2‘þ 1

X‘

m¼#‘

ja‘mj2: (4)

They are found to be consistent with the expectations for
isotropy at all energies, and upper limits to multipole
contributions are obtained. We obtain a limit on the am-
plitude of dipole anisotropy on the positron to electron

ratio, " ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1=4!

p
, for any axis in galactic coordinates

of " & 0:036 at the 95% confidence level.
In conclusion, the first 6:8' 106 primary positron and

electron events collected with AMS on the ISS show the
following: i. At energies <10 GeV, a decrease in the
positron fraction with increasing energy. ii. A steady
increase in the positron fraction from 10 to (250 GeV.
iii. The determination of the behavior of the positron
fraction from 250 to 350 GeV and beyond requires more
statistics. iv. The slope of the positron fraction versus
energy decreases by an order of magnitude from 20 to
250 GeV, and no fine structure is observed. The agreement
between the data and the model shows that the positron
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FIG. 6 (color). The positron fraction measured by AMS fit
with the minimal model. For the fit, both the data and the model
are integrated over the bin width. Even with the high statistics
and high accuracy of AMS, the spectrum shows no fine structure.

TABLE I. Representative bins of the positron fraction as a function of energy. Errors due to stat., statistical error; acc., acceptance
asymmetry; sel., event selection; mig., bin-to-bin migration; ref., reference spectra; c.c., charge confusion; and syst., total systematic
error. For the complete table, see [13].

Energy[GeV] Neþ Fraction #stat #acc #sel #mig #ref #c:c: #syst

1.00–1.21 9335 0.0842 0.0008 0.0005 0.0009 0.0008 0.0001 0.0005 0.0014
1.97–2.28 23 893 0.0642 0.0004 0.0002 0.0005 0.0002 0.0001 0.0002 0.0006
3.30–3.70 20 707 0.0550 0.0004 0.0001 0.0003 0.0000 0.0001 0.0002 0.0004
6.56–7.16 13 153 0.0510 0.0004 0.0001 0.0000 0.0000 0.0001 0.0002 0.0002
09.95–10.73 7161 0.0519 0.0006 0.0001 0.0000 0.0000 0.0001 0.0002 0.0002
19.37–20.54 2322 0.0634 0.0013 0.0001 0.0001 0.0000 0.0001 0.0002 0.0003
30.45–32.10 1094 0.0701 0.0022 0.0001 0.0002 0.0000 0.0001 0.0003 0.0004
40.00–43.39 976 0.0802 0.0026 0.0002 0.0005 0.0000 0.0001 0.0004 0.0007
50.87–54.98 605 0.0891 0.0038 0.0002 0.0006 0.0000 0.0001 0.0004 0.0008
64.03–69.00 392 0.0978 0.0050 0.0002 0.0010 0.0000 0.0002 0.0007 0.0013
74.30–80.00 276 0.0985 0.0062 0.0002 0.0010 0.0000 0.0002 0.0010 0.0014
86.00–92.50 240 0.1120 0.0075 0.0002 0.0010 0.0000 0.0003 0.0011 0.0015
100.0–115.1 304 0.1118 0.0066 0.0002 0.0015 0.0000 0.0003 0.0015 0.0022
115.1–132.1 223 0.1142 0.0080 0.0002 0.0019 0.0000 0.0004 0.0019 0.0027
132.1–151.5 156 0.1215 0.0100 0.0002 0.0021 0.0000 0.0005 0.0024 0.0032
151.5–173.5 144 0.1364 0.0121 0.0002 0.0026 0.0000 0.0006 0.0045 0.0052
173.5–206.0 134 0.1485 0.0133 0.0002 0.0031 0.0000 0.0009 0.0050 0.0060
206.0–260.0 101 0.1530 0.0160 0.0003 0.0031 0.0000 0.0013 0.0095 0.0101
260.0–350.0 72 0.1550 0.0200 0.0003 0.0056 0.0000 0.0018 0.0140 0.0152
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“ere’s substructure, hence DM.” 

positron fraction as a function of energy decreases by an
order of magnitude from 20 to 250 GeV.

Primary sources of cosmic ray positrons and electrons
may induce some degree of anisotropy of the measured
positron to electron ratio, that is, the ratio of the positron
flux to the electron flux. Therefore, a systematic search for
anisotropies using the selected sample is performed from
16 to 350 GeV.

Arrival directions of electrons and positrons are used to
build a sky map in galactic coordinates, (b,l), containing
the number of observed positrons and electrons. The fluc-
tuations of the observed positron ratio are described by
using a spherical harmonic expansion

reðb; lÞ
hrei

# 1 ¼
X1

‘¼0

X‘

m¼#‘

a‘mY‘mð!=2# b; lÞ; (3)

where reðb; lÞ denotes the positron ratio at (b,l), hrei is the
average ratio over the sky map, Y‘m are spherical harmonic
functions, and a‘m are the corresponding weights. The
coefficients of the angular power spectrum of the fluctua-
tions are defined as

C‘ ¼
1

2‘þ 1

X‘

m¼#‘

ja‘mj2: (4)

They are found to be consistent with the expectations for
isotropy at all energies, and upper limits to multipole
contributions are obtained. We obtain a limit on the am-
plitude of dipole anisotropy on the positron to electron

ratio, " ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1=4!

p
, for any axis in galactic coordinates

of " & 0:036 at the 95% confidence level.
In conclusion, the first 6:8' 106 primary positron and

electron events collected with AMS on the ISS show the
following: i. At energies <10 GeV, a decrease in the
positron fraction with increasing energy. ii. A steady
increase in the positron fraction from 10 to (250 GeV.
iii. The determination of the behavior of the positron
fraction from 250 to 350 GeV and beyond requires more
statistics. iv. The slope of the positron fraction versus
energy decreases by an order of magnitude from 20 to
250 GeV, and no fine structure is observed. The agreement
between the data and the model shows that the positron
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FIG. 6 (color). The positron fraction measured by AMS fit
with the minimal model. For the fit, both the data and the model
are integrated over the bin width. Even with the high statistics
and high accuracy of AMS, the spectrum shows no fine structure.

TABLE I. Representative bins of the positron fraction as a function of energy. Errors due to stat., statistical error; acc., acceptance
asymmetry; sel., event selection; mig., bin-to-bin migration; ref., reference spectra; c.c., charge confusion; and syst., total systematic
error. For the complete table, see [13].

Energy[GeV] Neþ Fraction #stat #acc #sel #mig #ref #c:c: #syst

1.00–1.21 9335 0.0842 0.0008 0.0005 0.0009 0.0008 0.0001 0.0005 0.0014
1.97–2.28 23 893 0.0642 0.0004 0.0002 0.0005 0.0002 0.0001 0.0002 0.0006
3.30–3.70 20 707 0.0550 0.0004 0.0001 0.0003 0.0000 0.0001 0.0002 0.0004
6.56–7.16 13 153 0.0510 0.0004 0.0001 0.0000 0.0000 0.0001 0.0002 0.0002
09.95–10.73 7161 0.0519 0.0006 0.0001 0.0000 0.0000 0.0001 0.0002 0.0002
19.37–20.54 2322 0.0634 0.0013 0.0001 0.0001 0.0000 0.0001 0.0002 0.0003
30.45–32.10 1094 0.0701 0.0022 0.0001 0.0002 0.0000 0.0001 0.0003 0.0004
40.00–43.39 976 0.0802 0.0026 0.0002 0.0005 0.0000 0.0001 0.0004 0.0007
50.87–54.98 605 0.0891 0.0038 0.0002 0.0006 0.0000 0.0001 0.0004 0.0008
64.03–69.00 392 0.0978 0.0050 0.0002 0.0010 0.0000 0.0002 0.0007 0.0013
74.30–80.00 276 0.0985 0.0062 0.0002 0.0010 0.0000 0.0002 0.0010 0.0014
86.00–92.50 240 0.1120 0.0075 0.0002 0.0010 0.0000 0.0003 0.0011 0.0015
100.0–115.1 304 0.1118 0.0066 0.0002 0.0015 0.0000 0.0003 0.0015 0.0022
115.1–132.1 223 0.1142 0.0080 0.0002 0.0019 0.0000 0.0004 0.0019 0.0027
132.1–151.5 156 0.1215 0.0100 0.0002 0.0021 0.0000 0.0005 0.0024 0.0032
151.5–173.5 144 0.1364 0.0121 0.0002 0.0026 0.0000 0.0006 0.0045 0.0052
173.5–206.0 134 0.1485 0.0133 0.0002 0.0031 0.0000 0.0009 0.0050 0.0060
206.0–260.0 101 0.1530 0.0160 0.0003 0.0031 0.0000 0.0013 0.0095 0.0101
260.0–350.0 72 0.1550 0.0200 0.0003 0.0056 0.0000 0.0018 0.0140 0.0152
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“ere’s substructure, hence DM.” 

positron fraction as a function of energy decreases by an
order of magnitude from 20 to 250 GeV.

Primary sources of cosmic ray positrons and electrons
may induce some degree of anisotropy of the measured
positron to electron ratio, that is, the ratio of the positron
flux to the electron flux. Therefore, a systematic search for
anisotropies using the selected sample is performed from
16 to 350 GeV.

Arrival directions of electrons and positrons are used to
build a sky map in galactic coordinates, (b,l), containing
the number of observed positrons and electrons. The fluc-
tuations of the observed positron ratio are described by
using a spherical harmonic expansion

reðb; lÞ
hrei

# 1 ¼
X1

‘¼0

X‘

m¼#‘

a‘mY‘mð!=2# b; lÞ; (3)

where reðb; lÞ denotes the positron ratio at (b,l), hrei is the
average ratio over the sky map, Y‘m are spherical harmonic
functions, and a‘m are the corresponding weights. The
coefficients of the angular power spectrum of the fluctua-
tions are defined as

C‘ ¼
1

2‘þ 1

X‘

m¼#‘

ja‘mj2: (4)

They are found to be consistent with the expectations for
isotropy at all energies, and upper limits to multipole
contributions are obtained. We obtain a limit on the am-
plitude of dipole anisotropy on the positron to electron

ratio, " ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1=4!

p
, for any axis in galactic coordinates

of " & 0:036 at the 95% confidence level.
In conclusion, the first 6:8' 106 primary positron and

electron events collected with AMS on the ISS show the
following: i. At energies <10 GeV, a decrease in the
positron fraction with increasing energy. ii. A steady
increase in the positron fraction from 10 to (250 GeV.
iii. The determination of the behavior of the positron
fraction from 250 to 350 GeV and beyond requires more
statistics. iv. The slope of the positron fraction versus
energy decreases by an order of magnitude from 20 to
250 GeV, and no fine structure is observed. The agreement
between the data and the model shows that the positron

1 10 210

AMS-02 

-1
10

Fit to Data 

FIG. 6 (color). The positron fraction measured by AMS fit
with the minimal model. For the fit, both the data and the model
are integrated over the bin width. Even with the high statistics
and high accuracy of AMS, the spectrum shows no fine structure.

TABLE I. Representative bins of the positron fraction as a function of energy. Errors due to stat., statistical error; acc., acceptance
asymmetry; sel., event selection; mig., bin-to-bin migration; ref., reference spectra; c.c., charge confusion; and syst., total systematic
error. For the complete table, see [13].

Energy[GeV] Neþ Fraction #stat #acc #sel #mig #ref #c:c: #syst

1.00–1.21 9335 0.0842 0.0008 0.0005 0.0009 0.0008 0.0001 0.0005 0.0014
1.97–2.28 23 893 0.0642 0.0004 0.0002 0.0005 0.0002 0.0001 0.0002 0.0006
3.30–3.70 20 707 0.0550 0.0004 0.0001 0.0003 0.0000 0.0001 0.0002 0.0004
6.56–7.16 13 153 0.0510 0.0004 0.0001 0.0000 0.0000 0.0001 0.0002 0.0002
09.95–10.73 7161 0.0519 0.0006 0.0001 0.0000 0.0000 0.0001 0.0002 0.0002
19.37–20.54 2322 0.0634 0.0013 0.0001 0.0001 0.0000 0.0001 0.0002 0.0003
30.45–32.10 1094 0.0701 0.0022 0.0001 0.0002 0.0000 0.0001 0.0003 0.0004
40.00–43.39 976 0.0802 0.0026 0.0002 0.0005 0.0000 0.0001 0.0004 0.0007
50.87–54.98 605 0.0891 0.0038 0.0002 0.0006 0.0000 0.0001 0.0004 0.0008
64.03–69.00 392 0.0978 0.0050 0.0002 0.0010 0.0000 0.0002 0.0007 0.0013
74.30–80.00 276 0.0985 0.0062 0.0002 0.0010 0.0000 0.0002 0.0010 0.0014
86.00–92.50 240 0.1120 0.0075 0.0002 0.0010 0.0000 0.0003 0.0011 0.0015
100.0–115.1 304 0.1118 0.0066 0.0002 0.0015 0.0000 0.0003 0.0015 0.0022
115.1–132.1 223 0.1142 0.0080 0.0002 0.0019 0.0000 0.0004 0.0019 0.0027
132.1–151.5 156 0.1215 0.0100 0.0002 0.0021 0.0000 0.0005 0.0024 0.0032
151.5–173.5 144 0.1364 0.0121 0.0002 0.0026 0.0000 0.0006 0.0045 0.0052
173.5–206.0 134 0.1485 0.0133 0.0002 0.0031 0.0000 0.0009 0.0050 0.0060
206.0–260.0 101 0.1530 0.0160 0.0003 0.0031 0.0000 0.0013 0.0095 0.0101
260.0–350.0 72 0.1550 0.0200 0.0003 0.0056 0.0000 0.0018 0.0140 0.0152
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“ere’s substructure, hence DM.” 

positron fraction as a function of energy decreases by an
order of magnitude from 20 to 250 GeV.

Primary sources of cosmic ray positrons and electrons
may induce some degree of anisotropy of the measured
positron to electron ratio, that is, the ratio of the positron
flux to the electron flux. Therefore, a systematic search for
anisotropies using the selected sample is performed from
16 to 350 GeV.

Arrival directions of electrons and positrons are used to
build a sky map in galactic coordinates, (b,l), containing
the number of observed positrons and electrons. The fluc-
tuations of the observed positron ratio are described by
using a spherical harmonic expansion

reðb; lÞ
hrei

# 1 ¼
X1

‘¼0

X‘

m¼#‘

a‘mY‘mð!=2# b; lÞ; (3)

where reðb; lÞ denotes the positron ratio at (b,l), hrei is the
average ratio over the sky map, Y‘m are spherical harmonic
functions, and a‘m are the corresponding weights. The
coefficients of the angular power spectrum of the fluctua-
tions are defined as

C‘ ¼
1

2‘þ 1

X‘

m¼#‘

ja‘mj2: (4)

They are found to be consistent with the expectations for
isotropy at all energies, and upper limits to multipole
contributions are obtained. We obtain a limit on the am-
plitude of dipole anisotropy on the positron to electron

ratio, " ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1=4!

p
, for any axis in galactic coordinates

of " & 0:036 at the 95% confidence level.
In conclusion, the first 6:8' 106 primary positron and

electron events collected with AMS on the ISS show the
following: i. At energies <10 GeV, a decrease in the
positron fraction with increasing energy. ii. A steady
increase in the positron fraction from 10 to (250 GeV.
iii. The determination of the behavior of the positron
fraction from 250 to 350 GeV and beyond requires more
statistics. iv. The slope of the positron fraction versus
energy decreases by an order of magnitude from 20 to
250 GeV, and no fine structure is observed. The agreement
between the data and the model shows that the positron
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FIG. 6 (color). The positron fraction measured by AMS fit
with the minimal model. For the fit, both the data and the model
are integrated over the bin width. Even with the high statistics
and high accuracy of AMS, the spectrum shows no fine structure.

TABLE I. Representative bins of the positron fraction as a function of energy. Errors due to stat., statistical error; acc., acceptance
asymmetry; sel., event selection; mig., bin-to-bin migration; ref., reference spectra; c.c., charge confusion; and syst., total systematic
error. For the complete table, see [13].

Energy[GeV] Neþ Fraction #stat #acc #sel #mig #ref #c:c: #syst

1.00–1.21 9335 0.0842 0.0008 0.0005 0.0009 0.0008 0.0001 0.0005 0.0014
1.97–2.28 23 893 0.0642 0.0004 0.0002 0.0005 0.0002 0.0001 0.0002 0.0006
3.30–3.70 20 707 0.0550 0.0004 0.0001 0.0003 0.0000 0.0001 0.0002 0.0004
6.56–7.16 13 153 0.0510 0.0004 0.0001 0.0000 0.0000 0.0001 0.0002 0.0002
09.95–10.73 7161 0.0519 0.0006 0.0001 0.0000 0.0000 0.0001 0.0002 0.0002
19.37–20.54 2322 0.0634 0.0013 0.0001 0.0001 0.0000 0.0001 0.0002 0.0003
30.45–32.10 1094 0.0701 0.0022 0.0001 0.0002 0.0000 0.0001 0.0003 0.0004
40.00–43.39 976 0.0802 0.0026 0.0002 0.0005 0.0000 0.0001 0.0004 0.0007
50.87–54.98 605 0.0891 0.0038 0.0002 0.0006 0.0000 0.0001 0.0004 0.0008
64.03–69.00 392 0.0978 0.0050 0.0002 0.0010 0.0000 0.0002 0.0007 0.0013
74.30–80.00 276 0.0985 0.0062 0.0002 0.0010 0.0000 0.0002 0.0010 0.0014
86.00–92.50 240 0.1120 0.0075 0.0002 0.0010 0.0000 0.0003 0.0011 0.0015
100.0–115.1 304 0.1118 0.0066 0.0002 0.0015 0.0000 0.0003 0.0015 0.0022
115.1–132.1 223 0.1142 0.0080 0.0002 0.0019 0.0000 0.0004 0.0019 0.0027
132.1–151.5 156 0.1215 0.0100 0.0002 0.0021 0.0000 0.0005 0.0024 0.0032
151.5–173.5 144 0.1364 0.0121 0.0002 0.0026 0.0000 0.0006 0.0045 0.0052
173.5–206.0 134 0.1485 0.0133 0.0002 0.0031 0.0000 0.0009 0.0050 0.0060
206.0–260.0 101 0.1530 0.0160 0.0003 0.0031 0.0000 0.0013 0.0095 0.0101
260.0–350.0 72 0.1550 0.0200 0.0003 0.0056 0.0000 0.0018 0.0140 0.0152
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“ere’s substructure, hence DM.” 

positron fraction as a function of energy decreases by an
order of magnitude from 20 to 250 GeV.

Primary sources of cosmic ray positrons and electrons
may induce some degree of anisotropy of the measured
positron to electron ratio, that is, the ratio of the positron
flux to the electron flux. Therefore, a systematic search for
anisotropies using the selected sample is performed from
16 to 350 GeV.

Arrival directions of electrons and positrons are used to
build a sky map in galactic coordinates, (b,l), containing
the number of observed positrons and electrons. The fluc-
tuations of the observed positron ratio are described by
using a spherical harmonic expansion

reðb; lÞ
hrei

# 1 ¼
X1

‘¼0

X‘

m¼#‘

a‘mY‘mð!=2# b; lÞ; (3)

where reðb; lÞ denotes the positron ratio at (b,l), hrei is the
average ratio over the sky map, Y‘m are spherical harmonic
functions, and a‘m are the corresponding weights. The
coefficients of the angular power spectrum of the fluctua-
tions are defined as

C‘ ¼
1

2‘þ 1

X‘

m¼#‘

ja‘mj2: (4)

They are found to be consistent with the expectations for
isotropy at all energies, and upper limits to multipole
contributions are obtained. We obtain a limit on the am-
plitude of dipole anisotropy on the positron to electron

ratio, " ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1=4!

p
, for any axis in galactic coordinates

of " & 0:036 at the 95% confidence level.
In conclusion, the first 6:8' 106 primary positron and

electron events collected with AMS on the ISS show the
following: i. At energies <10 GeV, a decrease in the
positron fraction with increasing energy. ii. A steady
increase in the positron fraction from 10 to (250 GeV.
iii. The determination of the behavior of the positron
fraction from 250 to 350 GeV and beyond requires more
statistics. iv. The slope of the positron fraction versus
energy decreases by an order of magnitude from 20 to
250 GeV, and no fine structure is observed. The agreement
between the data and the model shows that the positron
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FIG. 6 (color). The positron fraction measured by AMS fit
with the minimal model. For the fit, both the data and the model
are integrated over the bin width. Even with the high statistics
and high accuracy of AMS, the spectrum shows no fine structure.

TABLE I. Representative bins of the positron fraction as a function of energy. Errors due to stat., statistical error; acc., acceptance
asymmetry; sel., event selection; mig., bin-to-bin migration; ref., reference spectra; c.c., charge confusion; and syst., total systematic
error. For the complete table, see [13].

Energy[GeV] Neþ Fraction #stat #acc #sel #mig #ref #c:c: #syst

1.00–1.21 9335 0.0842 0.0008 0.0005 0.0009 0.0008 0.0001 0.0005 0.0014
1.97–2.28 23 893 0.0642 0.0004 0.0002 0.0005 0.0002 0.0001 0.0002 0.0006
3.30–3.70 20 707 0.0550 0.0004 0.0001 0.0003 0.0000 0.0001 0.0002 0.0004
6.56–7.16 13 153 0.0510 0.0004 0.0001 0.0000 0.0000 0.0001 0.0002 0.0002
09.95–10.73 7161 0.0519 0.0006 0.0001 0.0000 0.0000 0.0001 0.0002 0.0002
19.37–20.54 2322 0.0634 0.0013 0.0001 0.0001 0.0000 0.0001 0.0002 0.0003
30.45–32.10 1094 0.0701 0.0022 0.0001 0.0002 0.0000 0.0001 0.0003 0.0004
40.00–43.39 976 0.0802 0.0026 0.0002 0.0005 0.0000 0.0001 0.0004 0.0007
50.87–54.98 605 0.0891 0.0038 0.0002 0.0006 0.0000 0.0001 0.0004 0.0008
64.03–69.00 392 0.0978 0.0050 0.0002 0.0010 0.0000 0.0002 0.0007 0.0013
74.30–80.00 276 0.0985 0.0062 0.0002 0.0010 0.0000 0.0002 0.0010 0.0014
86.00–92.50 240 0.1120 0.0075 0.0002 0.0010 0.0000 0.0003 0.0011 0.0015
100.0–115.1 304 0.1118 0.0066 0.0002 0.0015 0.0000 0.0003 0.0015 0.0022
115.1–132.1 223 0.1142 0.0080 0.0002 0.0019 0.0000 0.0004 0.0019 0.0027
132.1–151.5 156 0.1215 0.0100 0.0002 0.0021 0.0000 0.0005 0.0024 0.0032
151.5–173.5 144 0.1364 0.0121 0.0002 0.0026 0.0000 0.0006 0.0045 0.0052
173.5–206.0 134 0.1485 0.0133 0.0002 0.0031 0.0000 0.0009 0.0050 0.0060
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“It’s either dark matter or pulsars.” 



“It’s either dark matter or pulsars.” 

The Astrophysical Journal, 761:91 (18pp), 2012 December 20 Ackermann et al.

Figure 4. Upper limits on the velocity averaged DM annihilation cross section including a model of the astrophysical background compared with the limits obtained
with no modeling of the background. Upper panel: limits on models in which DM annihilates into bb̄, for a DM distribution given by the NFW distribution (left) and
isothermal distribution (right). In the left panel we also add an uncertainty band (red dotted lines) in the 3σ no-background limits which would result from varying
the local DM density ρ0 in the range 0.2–0.7 GeV cm−3. A similar band, not shown in the plot for clarity, would be present for the limits including a model of the
astrophysical background (see discussion in the text). The horizontal line marks the thermal decoupling cross section expected for a generic WIMP candidate. Middle
panel: upper limits for DM annihilation to µ+µ−. Lower panel: the same, for DM annihilation to τ+τ−. The region excluded by the analysis with no model of the
astrophysical background is indicated in light blue, while the additional region excluded by the analysis with a modeling of the background is indicated in light green.
The regions of parameter space which provide a good fit to PAMELA (Adriani et al. 2009a, purple) and Fermi-LAT (Abdo et al. 2009, blue) CR electron and positron
data are shown, as derived in Cirelli et al. (2010) and are scaled by a factor of 0.5, to account for different assumptions on the local DM density (see the text for more
details).
(A color version of this figure is available in the online journal.)

DM annihilation interpretation of the PAMELA/Fermi CRs
anomalies, although this interpretation is challenged. Finally,
we note that the PAMELA region below ∼200 GeV is now
disfavored by the new positron measurements with the LAT

(Ackermann et al. 2012a), which indicate that the positron
fraction continues to rise to this energy.

It should be noted that the above conclusions are not affected
by the uncertainty in ρ0 since both the derived constraints
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Secondaries from the Source? 
Common belief: secondaries from propagation dominate since the grammage 
in the ISM is larger than in the source 

However, the secondaries from the source can 
have a much harder spectrum! 



Secondary Origin of     . 
Rise in positron fraction could be due 
to secondary positrons produced 
during acceleration and accelerated 
along with primary electrons 
Blasi, PRL 103 (2009) 051105 

 
Assuming production of galactic CR 
in SNRs, positron fraction can be 
#tted 
 
is effect is guaranteed, only its size 
depends on normalisation and one 
free parameter that needs to be #tted 
from observations 

Cas A in γ-rays from MAGIC 



Acceleration determined by compression ratio: 
 
 
Solve transport equation, 
 
 
 

DSA – Test Particle Approximation 

u
∂f

∂x
= D

∂2f

∂x2
+

1
3

du

dx
p
∂f

∂p

f
x→−∞−−−−−→ finj(p),

��� lim
x→∞

f
����∞

Solution for            : 

where 

f0(p) = γ

� p

0

dp�

p�

�
p�

p

�γ

finj(p�) + Cp−γ As long as                is softer than 
         , at high energies: 
 
  

f(x, p) ∼ p−γ

p−γ
finj(p)



DSA with Secondaries 
•  Secondaries get produced with primary spectrum: 

•  Only particles with                           can be accelerated 

•  Bohm diffusion:  

•  Fraction of secondaries that go  
into acceleration  

•  Equilibrium spectrum 
p2 > p1 

Rising positron fraction 
at source 
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Antiproton-to-proton Ratio 

rise in… 

DM (✓) 

Acceleration 
of Secondaries ✓ 

Pulsars ✗ - p
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Nuclear Secondary-to-Primary Ratios 
Nuclear secondary-to-primary ratios 
used for testing and calibrating 
propagation models 

rise in… nuclei 

DM ✗ 

Pulsars ✗ 

DM and pulsars do not 
produce nuclei! 
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Nuclear Secondary-to-Primary Ratios 

rise in… nuclei 

DM ✗ 

Pulsars ✗ 

Acceleration 
of Secondaries ✓ 

If nuclei are accelerated in the same 
sources as electrons and positrons, 
nuclear ratios must rise eventually 
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is would be a clear 
indication for acceleration of 

secondaries! 

? 
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always	
  (more)	
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There	
  are	
  aJrac*ve	
  and	
  very	
  
testable	
  astrophysical	
  
explana*ons,	
  
	
  

e.g.	
  secondary	
  positrons	
  from	
  
supernova	
  remnants	
  


