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Perturbative computations for the LHC

LHC looks for heavy physics beyond the Standard Model in hard collisions.  Such 
collisions occur at small distances where asymptotic freedom of QCD is at work. 

Since confinement is soft,  properties of jets are not affected by non-perturbative 
phenomena.  For this reason, jets provide a reliable probe of short-distance physics 
that can be used at large distances.

Factorization theorems imply that, for the purpose of describing hard inelastic 
collisions,  protons can be treated as beams of quarks and gluons.
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Perturbation theory for quark-gluon S-matrix

To describe collisions of quark-gluon beams,  we use  conventional perturbation theory 
where a small parameter is the QCD coupling constant.  Our goal is to compute jet 
cross-sections for fixed number of jets and arbitrary number of colorless particles 
(Z,W,H, etc.)

We start with identifying each jet with a single parton; this defines the leading order 
approximation.  We improve on it by adding both elastic (loops) and inelastic 
(additional gluons) corrections to the leading order approximation.

The need to combine elastic and inelastic contributions is related to the absence of 
mass gap in pQCD  and the ensuing infra-red and collinear divergences in processes 
with fixed parton multiplicities.   Kinoshita-Lee-Nauenberg theorem ensures their 
cancellation for properly-defined observables.

Leading order process Elastic correction Inelastic correction
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Perturbation theory for quark-gluon S-matrix

LHC is clearly a multi-jet collider.  Processes with 5-6 jets  are seen with tiny luminosity,      
2.4/pb!  Clearly processes with 9-10 jets in the final state will be seen with the luminosity that 
is available now.  

To describe these processes, we must have a way to handle such high-multiplicity final states in 
perturbative QCD. 
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Perturbation theory for quark-gluon S-matrix

Two main approaches:

1) Parton showers / resummations:  additional kinematic approximations (soft or 
collinear radiation) enable all-orders construction of the (approximate) S-matrix. 

2) Canonical application of perturbation theory:  all terms of the same order are 
calculated and combined,  and no kinematic approximations are used. 

The success and relevance of the second approach for the LHC physics depends on 
how far we can  push fixed-order perturbation theory in terms of jet multiplicities and 
the order of the perturbative expansion.  

We know now that we can push such calculations quite far.  This is a game-changer.

Studies of  quark/gluon scattering amplitudes in pQCD revealed  field-theoretic 
structures  that were not expected.

Talk by B. Webber

This talk
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Leading order: Berends-Giele recursion
For leading order computations, many key ideas ( spinor helicity methods, color-stripped 
amplitudes, Berends-Giele  (BG) recursions ) that we use to describe multi-parton final 
states at the LHC appeared in the late 1980s.  Thanks to  the significant increase in 
computing power and improved algorithms for phase-space generation, calculation of 
amplitudes and cross-sections for  very high multiplicity processes is now possible. 

σ [µb] Number of jets

jets 2 3 4 5 6 7 8
Comix 331.0(4) 22.72(6) 4.95(2) 1.232(4) 0.352(1) 0.1133(5) 0.0369(3)
ALPGEN 331.7(3) 22.49(7) 4.81(1) 1.176(9) 0.330(1)
AMEGIC 331.0(4) 22.78(6) 4.98(1) 1.238(4)

σ [µb] Number of jets

bb̄ + jets 0 1 2 3 4 5 6
Comix 471.2(5) 8.83(2) 1.813(8) 0.459(2) 0.150(1) 0.0531(5) 0.0205(4)
ALPGEN 470.6(6) 8.83(1) 1.822(9) 0.459(2) 0.150(2) 0.053(1) 0.0215(8)
AMEGIC 470.3(4) 8.84(2) 1.817(6)

σ [pb] Number of jets

tt̄ + jets 0 1 2 3 4 5 6
Comix 754.8(8) 745(1) 518(1) 309.8(8) 170.4(7) 89.2(4) 44.4(4)
ALPGEN 755.4(8) 748(2) 518(2) 310.9(8) 170.9(5) 87.6(3) 45.1(8)
AMEGIC 754.4(3) 747(1) 520(1)

Tab. 7 Cross sections σ in the MC4LHC comparison [32] setup. In parentheses the statistical error is stated
in units of the last digit of the cross section. Note that for AMEGIC++ and COMIX all subprocesses are
considered, while ALPGEN is restricted to up to four quarks. T. Gleisberg and S.Hoeche
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BCFW recursion
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Britto, Cachazo, Feng, Witten

Since leading order  computational methods were very well established, it came as a big 
surprise that there is a way to perform them in a very different way.

Both, Berends-Giele and diagrammatic approaches to perturbative computations involve 
off-shell degrees of freedom.  This seems to be a unavoidable consequence of the LSZ 
reduction formula.    However, the BCFW procedure gets around it  -- it  allows on-shell 
amplitudes to be computed recursively from on-shell amplitudes of lower multiplicity.
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i
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Progress with leading order computations

Explicit analytic solution for all tree QCD scattering amplitudes became available, as a 
byproduct of N=4 SYM computations.  A comparison of analytic and BG results reveals 
that MHV and NMHV amplitudes are computed more efficiently with analytic methods; 
after that, BG recursion becomes more efficient.

AMHV
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(N-6) gluon 6 quark amplitudes

Badger, Biedermann, Hackl, Plefka, Schuster, Uwer 

Dixon, Henn, Plefka, Schuster; Bourjaily
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Progress with next-to-leading order

Progress with NLO computations

● Lack of W+3 jets NLO computation just three years ago is an illustration of a  general 
problem – it was  not know how to perform 2 → 4  NLO  computations. On the other hand, 
the LHC physics is high-multiplicity  physics, so it is essential to go to 2->4 or even 2-> 5 
processes

● As an example, typical searches for supersymmetry require 4 jets and misssing energy, so 
Z+4 jets is an irreducible background. A NLO prediction for Z+4 jets was absolutely 
impossible until very recently

April 2001

In recent three to four years new technology for NLO 
computations appeared that  allowed us to take on 2->4 
and 2 → 5 computations 

G. Salam, talk at ICHEP 2010

  

NLO QCD describes data well

●
Good agreement between NLO calculations (Blackhat) and the ATLAS data for W + jets, 

some issues in HT ( will discuss shortly)

                                                                                                                                                                        

                                     .

                                                                                                                                                                        

                                                                                                                                                                        

                                                                                                                       

Progress with leading order computations did not translate into progress with next-to-leading 
order computations right away. Until recently, it took a decade to increase the final state 
multiplicity by one particle in a typical NLO computation.

In the past few years a remarkable change in pace 
occurred  thanks to two developments:

1) better ways of dealing with Feynman diagrams;

2) radically new (on-shell) methods for one-loop 
computations.

W+5j can be added to this plot since recently 
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A change in the one-loop paradigm

Unitarity (on-shell) techniques  allow us to reconstruct one-loop scattering amplitudes directly 
from tree-amplitudes, by-passing Feynman diagrams.

Bern, Dixon, Kosower

Earlier,  unitarity was considered  to be a useful tool for low-multiplicity computations, but 
we now understand how to make use of it for high-multiplicity processes as well.

The big boost to this technology came from a new way of tensor reduction for one-loop 
integrals discovered by Ossola, Pittau and Papadopulous (OPP) and from the observation 
of Ellis, Giele and Kunszt that generalized  unitarity at one-loop can be derived from the 
OPP tensor reduction.
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The box coefficient

= c

The simplicity and elegance of generalized unitarity is particularly striking when 
computation of box reduction coefficients are considered.

Replace a set of four propagators by delta-functions                             to isolate a 
particular box integral.  Four delta-functions restrict the integration completely. 

1

l2 �m2
! �(l2 �m2)

The reduction coefficient is expressed through tree on-shell  scattering amplitudes that 
appear in the four corners of the one-loop diagram in the left hand side above.  The result 
is general -- the  number of external particles is irrelevant.

Britto, Cachazo, Fengc =
1

2

X

l=l±

Atree
1 Atree

2 Atree
3 Atree

4

This simplicity does not quite hold up when extend this technique  to triangles, bubbles, masses, 
rational parts...., i.e. everything that is required to compute full amplitudes. Nevertheless,
to a large extent we can say that a tree-level S-matrix is sufficient to completely reconstruct
the one-loop S-matrix.

l±
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These ( and more traditional diagrammatic) 
developments of one-loop technology lead to  a 
significant  accomplishment -- NLO QCD 
predictions are now available for major hadron 
collider processes,  making rich phenomenology 
possible.  

1) multiple jets ( up to 4);

2) a gauge boson and up to 5 (!) jets;

3)multiple gauge bosons in association with up to 2 
jets ( up to VV+2jets);

4) top quarks in association with jets (up to two) 
and electroweak gauge bosons (W,Z,photon);

5) the Higgs bosons with up to 2 jets.

One-loop calculations:  no more wishes

  

Progress with NLO computations

● In the past three-four years, dramatic developments occurred in the field of next-to-leading 
order calculations for the LHC.  We were so successful, that the famous NLO wish-list has 
been officially closed by Joey Huston as of May 2012

NLO predictions are currently available  for 
major production channels: 

 1) multiple jets (up to 4 jets )

2)  a gauge boson and up to 5 jets

3) multiple gauge bosons in association with 
jets ( up to VV + 2j)

4)  top quarks in association with jets (up to 
two) and gauge bosons (W,Z, photon)

5) Higgs and jets

Bern, Dixon, Kosower, Berger, Forde, Maitre, Febres-Cordero, Bern, Dixon, Kosower, Berger, Forde, Maitre, Febres-Cordero, 

Gleisberg, Papadopoulos, Ossola, Pittau, Czakon, Worek, Gleisberg, Papadopoulos, Ossola, Pittau, Czakon, Worek, 
Bevilacqua, Ellis, Kunszt, Giele, Zanderighi, Melia, Rountsh, Bevilacqua, Ellis, Kunszt, Giele, Zanderighi, Melia, Rountsh, 

Denner, Dittmaier, Pozzorini, KallweitDenner, Dittmaier, Pozzorini, Kallweit
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One-loop calculations: automation

  

Madgraph@NLO

● New ideas for NLO computations make automation possible.  Madgraph-like computation 
of complex processes with NLO accuracy,  combined with the parton shower , appears 
within reach

                                                                                                                                                                        
                                     .

                                                                                                                                                                        
                                                                                                                                                                        
                                                                                                                       

MadLoop: Hirshi et al

An example of a@MCNLO study; so far it is 
done by the authors but they promise to go 
public in 2012

The other consequence of this progress is that  high efficiency of the NLO QCD computational 
methods for the first time makes it possible to have a real shot at  Madgraph-style automation of 
NLO QCD calculations.

Sherpa–OpenLoops process library for ATLAS/CMS

Status and available processes

• careful process-by-process validation (most processes ready)

• full set of NLO QCD diagrams, full colour

• off-shell leptonic W/Z decays: interferences, complex masses

• on-shell top quarks with LO decays

W/Z γ jets HQ pairs single-top Higgs

V+3j γ+3j 3(4)j tt̄+1j tb+1j (H+2j)

V V+2j γγ+1(2)j tt̄V+0(1)j t+1(2)j VH+1j

gg → V V+1j V γ+2j bb̄V+0(1)j tW+0(1)j tt̄H

V V V+0(1)j qq → Hqq+0(1)j

lower jet multiplicities implicitly understood

From a talk by S. PozzoriniMadLoop, Hirshi et al.
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Learning from the NLO results

NLO results  for cross sections have reduced renormalization and factorization scale dependence 
and, for the first time, provide reliable predictions for normalization of cross sections. For this 
reason, NLO computations will be indispensable when measurements of couplings and cross 
sections will start in earnest. 

But this is not all: indeed,  since NLO QCD computations take us quite a bit closer to reality, we 
should be able to learn more from them. In addition to better phenomenology, we should be 
able to assess quality of various approximations and short-cuts that we might want to use to 
arrive at  reliable results in more complex cases.  
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Figure 9: In the left pane, we show the production cross-section of the process pp → (W+ →
νµµ+) (W− → e−ν̄e) jj at the 7 TeV run of the LHC in dependence of the factorization and
renormalization scales µF = µR = µ, at LO and NLO in perturbative QCD. In the right pane, the
dependence of the cross-section on the center-of-mass energy

√
s is shown. LO results are shown in

dashed blue; NLO results are in solid red. Three choices of µ are shown: µ = MW , 2MW , 4MW .

• jets are defined using the anti-k⊥ algorithm [62] as implemented in FastJet [63], with

∆Rj1j2 =
√

(ηj1 − ηj2)2 + (φj1 − φj2)2 > 0.4; (3.1)

• jets are required to have transverse momentum p⊥,j > 30 GeV and the rapidity

|ηj | < 3.2;

• charged leptons are required to have transverse momenta p⊥,l > 20 GeV and the

rapidity |ηl| < 2.4;

• missing transverse momentum is required to satisfy p⊥,miss > 30 GeV.

In the left pane of Fig. 9 we show the dependence of the cross-section pp → W+W− →
µ+νµeν̄e jj at the 7 TeV run of the LHC, on the factorization and renormalization scales,

which we set equal to each other. At leading-order, the cross-section falls with the scale

µ, which is attributable to the behaviour of the strong coupling αs. Considering a range

of factorization/renormalization scales MW < µ < 4MW and choosing the central value

µ = 2MW , we obtain a cross-section σLO = 46 ± 13 fb. At next-to-leading order, the

dependence on µ is dramatically reduced and the cross-section becomes σNLO = 42± 1 fb.

Such a decrease in the scale dependence is typical of NLO results, and indeed one of the

primary motivations for performing calculations at next-to-leading order in pQCD. At the

scale µ = 2MW , the NLO corrections increase the cross-section by about 2%. Assuming

fifty percent efficiency, with 5 fb−1 of data at the 7 TeV run of the LHC, we expect about

400 dilepton events e+µ−, eµ+, e+e−, µ+µ−.

It is interesting to know how the cross-section for W+W−jj production changes with

the collision energy. In the right pane of Fig. 9, we show that the dependence of the

– 15 –

T. Melia, R. Ronstch et al. 
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Figure 12: Distributions of jet pseudorapidity difference, lepton opening angle and invariant
masses for pp → νµµ+e−ν̄ejj at the 7 TeV run of the LHC. LO results are shown in blue; NLO
results are in red and orange. The uncertainty bands are for scale MW ≤ µ ≤ 4MW , and the solid
lines show the results at µ = 2MW .

The computation of NLO QCD corrections was performed using the method of D-

dimensional generalized unitarity [8, 9]. Practical implementations of the generalized uni-

tarity technique require color ordering4; for this reason, the presence of any colorless particle

leads to additional complication since colorless particles can not be ordered. Most processes

for which the NLO QCD corrections have been computed using the on-shell methods in-

volve at most one colorless particle. The results of this paper and of Ref. [24] show that

generalized unitarity methods can be efficiently used to deal with processes with a larger

number of colorless particles, although the most general framework for that is yet to be

understood.

We studied some phenomenology of the W+W−jj production at the Tevatron and

4See, however, a recent discussion in Ref. [65].

– 18 –

pp ! W+W� + 2j
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Top quark pair production

●
We can assess  the quality of the narrow width approximation by comparing ``narrow 

width'' kinematic distributions for top quark pair production with the recent computation of 

pp → WWbb through NLO QCD

●
The full computation includes double resonance, single resonance and non-resonance 

diagrams; it can deviate from ``top pair production'' cross-section but the effect is expected 

to be small for realistic selection criteria

Top production cross-section in the di-lepton final state; no cuts on top invariant 

mass; typical cuts on transverse momenta, missing energies, rapidities etc. 

Denner, Dittmaier, Kallweit, Pozzorini, Schulze

Standard top-like selection cuts are applied to 
WWbb final state for cross-section calculation.

Kinematic distributions agree very well when 
on-shell kinematics is allowed but may show 
larger deviations when this is not the case.

Denner, Dittmaier, Kallweit, Pozzorini, Schulze

Off-shell effects in top quark pair production

How well does the narrow width 
approximation  work for the LHC physics?

We can answer this question by comparing top 
quark pair production computed in the narrow 
width approximation with complete computation 
for WWbb final state.

Significant effects beyond the clear kinematic 
edge of b-lepton invariant mass at LO in the 
narrow width approximation.  Perhaps 
relevant for the recent ``cleanest’’ top quark 
mass measurement performed by the CMS 
from the end point?
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Higgs production in association with jets
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Kinematic constraints on observable final states may introduce instabilities into perturbative 
expansion.  The reason can be an``incomplete’’ cancellation of infra-red sensitivity of virtual and 
real corrections or sensitivity of an observable to soft/collinear emissions.

The sum of the jet vetoed cross-section and the 1-jet cross-section is the 
inclusive cross-section the is not affected by the transverse momentum cuts

Numerically,  for 30 GeV transverse momentum vero,  the 
corrections may be significant but they are hardly overwhelming 
and, probably, can be cured by going to sufficiently high  orders in 
fixed-order perturbation theory or performing resummations.   
Nevertheless, it is interesting to see if we have experimental 
indications that processes with jet-vetoes show worse 
perturbative behavior than the inclusive ones.
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Jet vetos and large logarithms ?

Jet cross sections and jet-vetoed cross sections  are two sides of the same coin.  Jet cross 
sections for objects with electroweak-scale masses and 30 GeV jet transverse momentum 
cut have been  measured at the LHC.  There is no indication that perturbation theory breaks 
down.
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The important difference between Higgs and 
Z production is that color charges of colliding 
partons are smaller in Z-production than in 
the Higgs production -- radiative effects in 
Higgs production should be worse. But this 
difference is (somewhat) ameliorated if we go 
to Z+1j etc. Yet, even in Z+1 jet, perturbation 
theory works well.
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Scale setting and W+3 jets at NLO

● CKKW/MLM procedure does a very good jobs in describing NLO shapes

S. Hoche, J. Huston, D. Maitre, J. Winter, G. ZanderighiBlackhat/Rocket/Sherpa comparison

S. Hoche, J. Huston, D. Maitre, J. Winter and G. Zanderighi

It is possible to extend the scale-setting prescription of 
CKKW to NLO by choosing the geometric mean of 
nodal scales to compute the virtual corrections  
(MINLO) 

Can MINLO be a poor-man solution to exact  NNLO 
rates and shapes? It will be interesting to see that.

Hamilton, Nason, Zanderighi

Choosing renormalization and factorization scales

Since NLO computations are more scale-
independent than LO computations,   we can 
ask  the question -- what is the right scale  
choice at LO ?

Of course, no universal answer exists since the 
coupling constants ``run’’; the ``right scale’’ is 
determined by an event  location in  a multi-
particle phase-space.

CKKW/MLM procedures have a build-in 
prescription to fix dynamical scales. They often 
provide shapes of kinematic distributions 
consistent with NLO QCD predictions
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Merging different jet multiplicity samples at NLO

● NLO  QCD predictions for HT may show significant uncertainties in high-energy tail of the 
distribution. Can be removed by combining NLO predictions for W+1j, W+2j etc. 

                                                                                                                                                               
                                              .

                                                                                                                                                                        
                                                                                                                                                                        
                                                                                                                       

Hoche, Krauss, Schonherr, Siegert

MC@NLO: n-jets at NLO, (n+1)  at LO, rest is PS

MENLOPS: n-jets at NLO, n+1, n+2, etc. at LO merged 
with PS

MEPS@NLO: n, n+1, n+2,... at NLO, merged and matched 
to parton shower

  

Merging different jet multiplicity samples at NLO

● NLO  QCD predictions for HT may show significant uncertainties in high-energy tail of the 
distribution. Can be removed by combining NLO predictions for W+1j, W+2j etc. 

                                                                                                                                                               
                                              .

                                                                                                                                                                        
                                                                                                                                                                        
                                                                                                                       

Hoche, Krauss, Schonherr, Siegert

MC@NLO: n-jets at NLO, (n+1)  at LO, rest is PS

MENLOPS: n-jets at NLO, n+1, n+2, etc. at LO merged 
with PS

MEPS@NLO: n, n+1, n+2,... at NLO, merged and matched 
to parton shower

MC@NLO: n-jets NLO,
n+1 jets at LO, rest -- PS

MENLOPS: n-jets NLO, 
n+1, n+2...jets LO matched 
to parton shower

MEPS@NLO: n, n+1, n
+2...jets 
at NLO merged and matched 
to parton shower

Hoche, Krauss, Schonherr, Siegert

Improving on next-to-leading order computations

NLO computations have known shortcomings:  
1) they fail close to kinematic boundaries; 2) they 
show residual  dependence on renormalization 
scales; 3)  they describe a very limited 
combination of parton multiplicities at a time.  

We can cure these problems by

1) combining  NLO computations with parton 
showers (MC@NLO, POWHEG, SHERPA) -- an 
ever increasing number of processes is being 
implemented in these programs;

2) understanding  how to merge NLO QCD 
predictions for processes with different 
multiplicities (MEPS@NLO, GENEVA );

3) developing NNLO technology for multi-
particle processes.
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While next-to-leading order  computations for the LHC proved  to be a tough problem,  the 
``in principle’’ solution was available for a long time.  In the 1970s Passarino and Veltman 
described a reduction procedure for tensor integrals and t’Hooft and Veltman explained how 
to compute one-loop scalar integrals.  A general procedure to reduce  arbitrary NLO 
computation to calculation of infra-red and collinear-finite quantities was formulated by 
Catani and Seymour and by Frixione, Kunszt and Signer in mid-1990s.

On the contrary,  technique for next-to-next-to-leading order computations was a total  
unknown for a long time.  To be sure, a large number of multi-loop effects were computed 
for LEP physics, but all of them referred to inclusive decays of the Z-bosons.

The only ``20th century’’  NNLO QCD hadron collider computation was done by van 
Neerven and collaborators in the 1990;  the next one had to wait for 12 years.

It is therefore quite remarkable that in the past year we have witnessed a tremendous 
progress towards fully general computational scheme that should allow us to deal with 
generic  NNLO QCD calculations.  The ``NNLO revolution’’ is taking  over the NLO one. 

Next-to-next-to-leading order computations

I would like to illustrate these developments by showing  you the key steps in reaching the 
NNLO QCD frontier in  hadron collider physics.
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Next-to-next-to-leading order computations
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I n t hi s paper we pr esent t he compl et e cal cul at i on of t he or der as cor r ect i on i n t he MS
scheme t o t he Dr el l - Yan K- f act or . Al l channel s r epr esent ed by t he qq, qg, gg and qq
subpr ocesses have been i ncl uded now. One of our concl usi ons i s t hat t he O( as) par t of t he
K- f act or i s domi nat ed by t he qq as wel l as t he qg r eact i on. The l at t er l eads t o a negat i ve
cont r i but i on over t he whol e ener gy r ange under i nvest i gat i on ( 0. 5 TeV < VFS <50 TeV) . I t even
over whel ms t he posi t i ve qq cont r i but i on at l ar ge col l i der ener gi es char act er i st i c f or LHCand
SSC. I t t ur ns out t hat t he or der a. cor r ect ed K- f act or i s qui t e i nsensi t i ve t o var i at i ons of t he
f act or i zat i on scal e Mover t he r egi on 10 GeV< M< 1000 GeV. We al so compar e our r esul t s
wi t h t he dat a obt ai ned by UA1, UA2 and CDF.

The t heor et i cal j ust i f i cat i on f or per t ur bat i ve st r ong i nt er act i on cor r ect i ons t o t he
par t on model [ 11 and t hei r summat i on by r enor mal i zat i on gr oup t echni ques i n t he
f r amewor k of QCDl ead t o a weal t h of r adi at i ve cor r ect i ons t o numer ous pr ocesses
( f or a r evi ew see r ef . [ 2] ) . The most i nt er est i ng out come of t hese cal cul at i ons was
t hat some of t he cor r ect i ons t ur ned out t o be r at her l ar ge . Thi s can mai nl y be
at t r i but ed t o t he consi der abl e si ze of t he r unni ng coupl i ng const ant s as( R2 ) whi ch
decr eases sl owl y as R2 gr ows. Because of t hese l ar ge cor r ect i ons one can quest i on
t he pr edi ct i ve power of per t ur bat i ve QCD. However , exper i ment s showt hat t her e
i s a consi der abl e di scr epancy bet ween t he pr edi ct i ons of t he Bor n appr oxi mat i on
and t he exper i ment al dat a. Nowadays i t i s commonl y accept ed t hat t he r at i o
bet ween t he measur ed cr oss sect i on and t he Bor n appr oxi mat i on, gener al l y cal l ed
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Results slightly corrected by Kilgore and Harlander 
in 2002

9

The NNLO prediction for this ratio is 11.04± 0.04, in good agreement with the measured value.

The ratio of cross sections for W+ and W� production is given by

sW+

sW�
=

NW+

NW�

eW�

eW+

AW�

AW+
,

where AW+ and AW� are the acceptances for W+ and W�, respectively. The two different decay
channels are combined by assuming fully correlated uncertainties for the acceptance factors,
with other uncertainties assumed uncorrelated. This results in the measurements

s(pp ! W+X)⇥ BR(W+ ! e+n)
s(pp ! W�X)⇥ BR(W� ! e�n)

= 1.44 ± 0.01(stat)± 0.05(syst),

s(pp ! W+X)⇥ BR(W+ ! µ+n)
s(pp ! W�X)⇥ BR(W� ! µ�n)

= 1.38 ± 0.01(stat)± 0.03(syst),

s(pp ! W+X)⇥ BR(W+ ! l+n)
s(pp ! W�X)⇥ BR(W� ! l�n)

= 1.39 ± 0.01(stat)± 0.02(syst).

The NNLO prediction for this ratio is 1.41 ± 0.01, which agrees with the presented measure-
ment.

Summaries of the measurements are given in Figs. 6, 7, and 8, illustrating the consistency of
the measurements in the electron and muon channels, as well as confirming the theoretical
predictions. The statistical error is represented in black and the total experimental uncertainty,
obtained by adding in quadrature the statistical and systematic uncertainties, is in red. For
the cross section measurements, the luminosity uncertainty is added to the experimental un-
certainty, and is represented in green. The yellow vertical line represents the theoretical pre-
diction, and the light-yellow vertical band is the theoretical uncertainty, interpreted as a 68%
confidence interval, as described earlier.

Figure 6: Summary of the W and Z production cross section times branching ratio measure-
ments. Measurements in the electron and muon channels, and combined, are compared to
the theoretical predictions (yellow band) computed at the NNLO in QCD with FEWZ and the
MSTW2008 PDF set. Statistical uncertainties are represented as a black error bars, while the red
error bars also include systematic uncertainties, and the green error bars also include luminos-
ity uncertainties.

Figure 9 shows the measured and predicted W versus Z and W+ versus W� cross sections.

The NNLO computation for DY 
production is also used to constraint 
parton distribution functions.

D
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A very difficult analytic computation 
that was hardly automated (1990!)
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Next-to-next-to-leading order computations

The NNLO Drell-Yan computation required  two-loop quark form-factor.  It was computed 
by van Neerven earlier using dispersion relations.   But -- it was unclear how to extend this 
technique  to compute two-loop integrals relevant   for  2 - 2 scattering.

In 1999, Smirnov and Tausk showed how to compute two-loop  planar and non-planar box 
diagrams.

At around the same time, Laporta came up with the suggestion on how to ``automate’’ 
solutions of  integration-by-parts identities discovered by Chetyrkin and Tkachov. 

These developments lead to very rapid progress with calculations of a large number of 2-2 
scattering amplitudes for massless particles 

W. van Neerven B. Tausk

gg ! gg, qq̄ ! gg qg ! qg, qg ! q�⇤, gg ! Hg, etc.

Anastasiou, Glover,  Gehrmann, Gehrmann-de Ridder, Oleari, Remiddi, Bern, Dixon etc. 

By 2001 it appeared that NNLO computations for 2-2 processes were within reach but 
we had to wait for another decade to see this happening....
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Next-to-next-to-leading order computations

The reason it took so long to understand how to do  the NNLO computations was 
the problem with constructing the “subtraction terms’’ for real emission processes.

Subtraction terms are needed because -- while  infra-red divergencies do cancel  in 
the sum of the three contributions shown below --  these three contributions live in 
different phase-spaces and can not be computed  in the same manner.  

To deal with this issue, we introduce  subtraction terms that  make  double-real and 
real-virtual  contributions finite and integrable over their particular   phase-spaces 
even when constrained by the measurement function ( jet algorithms, experimental 
selection cuts, etc.). 
 

Attempts to understand how to do this at NNLO proved to be very challenging.

Double virtual Real-virtual Real-real

Z
d�n+2R =

Z
d�n+2

⇣
R� R̃

⌘
+

Z
d�nR̃I
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Singular limits of scattering amplitudes
Subtraction terms must be relevant in singular parts of the phase-space, where some 
partons become soft or collinear to other particles.  For this reason, one would hope that 
subtraction terms can be obtained from singular limits of the amplitudes. 

It is interesting to point out that all  singular limits of scattering  amplitudes relevant for 
NNLO calculations were worked out explicitly by the year 2000.    The issue that prevented 
us from using these singular limits to construct subtraction terms was the problem of 
overlapping divergences.
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[

can be factorized with respect to the tree-level current Ja (0)
µ (q) (see Eqs. (35) and (36)),

new ‘non-factorizable’ contributions appear when the loop momentum is soft. To single
out these new contributions, we write the following identity:

|M(1)
soft(q, {p})〉 = gS µε εµ(q) J

(0)
µ (q) |M(1)

soft({p})〉

+
(

|M(1)
soft(q, {p})〉 − gSµεεµ(q)J (0)

µ (q)|M(1)
soft({p})〉

)

, (37)

where we have added and subtracted the ‘factorized’ contribution. Then we combine the
contributions from the hard, collinear and soft regions by adding Eqs. (35), (36) and (37),
and we obtain

|M(1)(q, {p})〉 = gS µε εµ(q) J
(0)
µ (q) |M(1)({p})〉

+
(

|M(1)
soft(q, {p})〉 − gSµεεµ(q)J (0)

µ (q)|M(1)
soft({p})〉

)

. (38)

The first term on the right-hand side of Eq. (37) together with the contributions from
Eqs. (35) and (36) have reconstructed the first term on the right-hand side of Eq. (38),
which is exactly the first term on the right-hand side of the factorization formula (17).
What remains to be done to prove the factorization formula is to relate the second term
on the right-hand side of Eq. (17) with the contribution in the round bracket of Eq. (38).

q

l

j

i

i

j

i

j
- + J(0)(q)( )

Figure 2: Graphs that contribute to the one-loop soft current.

For this purpose, we first note that when the real gluon q and the virtual gluon k are
both soft, they can couple only to the external hard lines. In the corresponding Feynman
diagrams, which are schematically represented by the first graph in Fig. 2, the tree-level
amplitude M(0)({p}) is factorized in the soft limit. We can write:

|M(1)
soft(q, {p})〉 # (gS µε)3 εµ(q) K

(1)
µ (q, ε) |M(0)({p})〉 , (39)

where the kernel K
(1) (represented by the box in Fig. 2) denotes all the soft-gluon insertions

of q and k on the hard-momentum lines. Then, we note that M(0)({p}) is factorized also

in the expression (34) for M(1)
soft({p}). Therefore, the contribution in the round bracket

of Eq. (38) can be recast in the form of the second term on the right-hand side of the
factorization formula (17). Moreover, using Eqs. (39) and (34), we obtain the following
explicit representation of the one-loop contribution J

(1) to the soft-gluon current (Fig. 2):

εµ(q) J
(1)
µ (q, ε) = εµ(q)

{

K
(1)
µ (q, ε) − J

(0)
µ (q)

1

2

∫

ddk

(2π)d

i

k2 + i0

[

J
(0)
ν (k)

]†
· J

ν (0)(k)

}

.

(40)

12

Collinear factorization ( Catani, Grazzini)
Soft factorization (Catani, Grazzini)

Soft factorization at one-loop (Catani, Grazzini)Collinear  factorization at one-loop (Kosower, Uwer)

Related work on singular limits by Campbell, Glover, Berends, Giele, Bern, Del Duca, Kilgore, Schmidt

M({n}+ j + j) ⇡ g2sFsing({n}, i, j)M({n})
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Next-to-next-to-leading order computations

  

Inclusive production and jet binning

● Second, very large QCD radiative corrections are known to exist in inclusive  gg → H+X 

process and in the inclusive gg → H+ jet process  

Beware that numerical results and 

PDF choices shown above are 

obsolete by now; they are taken 

from the original 1999 calculation.

K-factors for H+jet production

Cross-sections for inclusive 

gg → H production

De Florian, Kunszt, GrazziniDe Florian, Kunszt, Grazzini

Also, Harlander and  Kilgore; van Neerven,  
Rabindran, Smith

In the meantime,  the progress was coming from a different direction. Computation of 
NNLO QCD corrections to  Higgs boson production in gluon fusion is technically similar to 
Drell-Yan, but it is more involved ( gluon self-couplings are more nasty).   Particularly bad  is 
the computation of real emission  ggH phase-space integrals.

To deal with this problem,  Anastasiou and myself suggested to use the  ``reversed unitarity’’:  
write on-shell condition as a difference of two propagators, apply integration-by-parts 
identities to forward scattering amplitude, express the result in terms of a few ``phase-
space’’ master-integrals....

L =

↵s

6⇡
Tr [Gµ⌫G

µ⌫
] log

✓
1 +

H

v

◆
,

�(p2 �m2) ! 1

2⇡i

✓
1

p2 +m2 � i0
� 1

p2 �m2 + i0

◆

According to a recent study by C. Anastasiou and 
collaborators, it is possible to make use of the ``reversed 
unitarity’’ idea for  the N^3LO ggH computation 
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Next-to-next-to-leading order computations
Next-to-next-to-leading order computations for total cross-sections are important,  
but at hadron colliders they are largely unphysical, because of finite detector 
acceptances.   To continue pushing for higher precision, we  need to control higher-
order effects in a phase-space, restricted by an arbitrary selection criteria.   

First solution to the problem was peculiar -- choose a distribution, use the ``reversed 
unitarity’’ but now write kinematic constraints as differences of unconventional 
propagators, treat everything as a forward-scattering amplitude, and use integration by 
parts to reduce the problem to the evaluation of master integrals.

�

✓
pV · p1
pV · p2

� u

◆
! 1

2⇡i

✓
pV · p2

pV · (p1 � up2)� i0
� c.c.

◆
u =

x1

x2
e

�2Y

C. Anastasiou, L.Dixon, K.M., F. Petriello
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Next-to-next-to-leading order computations
Yet, even with Z and W rapidity distributions computed through NNLO,  the question 
of fully-differential NNLO computation remained.  We want to construct a flexible 
computational scheme that allows us to extract all the singularities yet not integrate 
over final state particles..   For hadron colliders, this problem was first solved in two 
different way, but  both had serious  limitations.

pt-subtraction (HNNLO, DYNNLO)sector decomposition (FEHiP, FEWZ)

FEWZ2.1 Ryan,  Li, Petriello, Quackenbush S. Catani, D. Florian, G.Ferrera and M.Grazzini

pp ! ��

pp ! W�

Anastasiou, Melnikov, Petriello

Catani, Grazzini

Sector decomposition -- as originally formulated  -- requires global parametrization 
of  a multi-particle  phase-space.  On the other hand, it can only work efficiently if 
parametrization of singular ``corners’’ of the phase-space is simple.  The two conditions are not 
compatible for complex processes where the singularity structure is non-trivial.

The pt-subtraction works only for colorless final states...
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Next-to-next-to-leading order computations

In parallel to this, new tools were  developed for NNLO QCD computations at lepton 
colliders.  Heinrich, Gehrmann-de Ridder , Gehrmann and Glover suggested an antenna 
subtraction method  to compute the 3-jet production rate and many event shapes in electron-
positron annihilation.

Antenna subtraction method is the first ( and the only) NNLO method that is  based on the 
identification of subtraction terms,  their analytic integration over unresolved phase-space and 
analytic cancellation of infra-red and collinear singularities.  
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As you see, work on identifying suitable framework to deal with  real emission contributions 
to NNLO QCD corrections for a generic hadron collider process was in the making for 
almost a decade and there is a feeling that we finally have it.

Next-to-next-to-leading order computations

One of the clear indications of this progress is that we 
now know how to use the singular limits of scattering 
amplitudes ( that have been known for more than a 
decade ) to construct the necessary subtraction terms.

This understanding is independent of the number of 
external particles in the process and, therefore, we can 
hope that we are on to the universal method !

At NNLO QCD we have two working solutions 

- antenna subtraction by Gehrmann-de-Ridder,  Gehrmann, Glover ;

 -sector decomposition/FKS by Czakon [also, Boughezal, Petriello, K.M.].
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2

liders to NNLO accuracy. The program consists of three
integration channels:

dσ̂gg,NNLO =

∫

dΦ4

[

dσ̂RR
gg,NNLO − dσ̂S

gg,NNLO

]

+

∫

dΦ3

[

dσ̂RV
gg,NNLO − dσ̂T

gg,NNLO

]

+

∫

dΦ2

[

dσ̂V V
gg,NNLO − dσ̂U

gg,NNLO

]

, (1)

where each of the square brackets is finite and well be-
haved in the infrared singular regions. For the all-gluons
channel, the construction of the three subtraction terms
dσ̂S,T,U

ij,NNLO was described in Refs. [39–41].
In the three-parton and four-parton channel, the phase

space has been decomposed into multiple wedges (6
three-parton wedges and 30 four-parton wedges), each
containing only a subset of possible infrared singular con-
tributions. Inside each wedge, the generation of multiple
phase space configurations related by angular rotation of
unresolved pairs of particles around their common mo-
mentum axis ensures a local convergence of the antenna
subtraction term to the relevant matrix element. Owing
to the symmetry properties of the all-gluon final state,
many wedges yield identical contributions, thereby al-
lowing a substantial speed-up of their evaluation.
Jets in hadronic collisions can be produced through

a variety of different partonic subprocesses, and the all-
gluon process is only one of them. Our results on this
process can therefore not be directly compared with ex-
perimental data. The all-gluon process does however al-
low to establish the calculational method, and to qualify
the potential impact of NNLO corrections on jet observ-
ables. It should be noted that the NLO corrections to
hadronic two- and three-jet production were also first
derived in the all-gluon channel [42–44], well before full
results could be completed [6, 7, 45]. In both cases, the
all-gluon results were extremely vital both for establish-
ing the methodology and for assessing the infrared sensi-
tivity of different jet algorithms [44].
Our numerical studies for proton-proton collisions at

centre-of-mass energy
√
s = 8 TeV concern the single

jet inclusive cross section (where every identified jet in
an event that passes the selection cuts contributes, such
that a single event potentially enters the distributions
multiple times) and the two-jet exclusive cross section
(where events with exactly two identified jets contribute).
Jets are identified using the anti-kT algorithm with res-

olution parameter R = 0.7. Jets are accepted at central
rapidity |y| < 4.4, and ordered in transverse momentum.
An event is retained if the leading jet has pT1 > 80 GeV.
For the dijet invariant mass distribution, a second jet
must be observed with pT2 > 60 GeV.
All calculations are carried out with the

MSTW08NNLO gluon distribution function [46],
including the evaluation of the LO and NLO contri-
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FIG. 1: Inclusive jet transverse energy distribution, dσ/dpT ,
for jets constructed with the anti-kT algorithm with R = 0.7
and with pT > 80 GeV, |y| < 4.4 and

√
s = 8 TeV at NNLO

(blue), NLO (red) and LO (dark-green). The lower panel
shows the ratios of NNLO, NLO and LO cross sections.

butions [47]. This choice of parameters allows us to
quantify the size of the genuine NNLO contributions
to the parton-level subprocess. Factorization and
renormalization scales (µF and µR) are chosen dynami-
cally on an event-by-event basis. As default value, we
set µF = µR ≡ µ and set µ equal to the transverse
momentum of the leading jet so that µ = pT1.
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FIG. 2: Scale dependence of the inclusive jet cross section for
pp collisions at

√
s = 8 TeV for the anti-kT algorithm with

R = 0.7 and with |y| < 4.4 and 80 GeV < pT < 97 GeV at
NNLO (blue), NLO (red) and LO (green).

In Fig. 1 we present the inclusive jet cross section for
the anti-kT algorithm with R = 0.7 and with pT >
80 GeV, |y| < 4.4 as a function of the jet pT at LO,
NLO and NNLO, for the central scale choice µ = pT1.
The NNLO/NLO k-factor shows the size of the higher
order NNLO effect to the cross section in each bin with
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Figure 4. Results for the product of partonic cross-sections gg → H + jet and parton luminosity in
consecutive orders in perturbative QCD at µR = µF = mh = 125 GeV. See the text for explanation.

functions

L(z, µF ) =

∫ 1

z

dx

x
g(x, µF )g

( z

x
, µF

)

. (7.7)

It follows from Fig. 4 that NNLO QCD corrections are significant in the region
√
s <

500 GeV. In particular, close to partonic threshold
√
s ∼ Eth, radiative corrections are en-

hanced by threshold logarithms ln β that originate from the incomplete cancellation of virtual

and real corrections. There seems to be no significant enhancement of these corrections at

higher energies, where the NNLO QCD prediction for the partonic cross-section becomes al-

most indistinguishable from the NLO QCD one. Note that we extend the calculation of the

NNLO partonic cross-section to
√
s ∼ 500 GeV only. From leading and next-to-leading order

computations, we know that by omitting the region
√
s > 500 GeV, we underestimate the

total cross-section by about 3%. To account for this in the NNLO hadronic cross-section cal-

culation, we perform an extrapolation to higher energies constructed in such a way that when

the same procedure is applied to LO and NLO cross-sections, it gives results that agree well

with the calculation without extrapolation. The correction for the extrapolation is included

in the NNLO QCD cross-sections results shown below.

We now show the integrated hadronic cross-sections for the production of the Higgs

boson in association with a jet at 8 TeV LHC in the all-gluon channel. We choose to vary

the renormalization and factorization scale in the range µR = µF = mH/2, mH , 2mH . After

– 40 –
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First NNLO results for 2       2 processes  

First NNLO QCD results for top quark pair production (complete), dijet production (gluons 
only , large-N) and H+jet production (gluons only) in hadron collisions appeared recently.   While 
some of these results are still incomplete it is clear that they represent a breakthrough in 
perturbative QCD that will, eventually, provide   important phenomenological insights. 

Interesting phenomenology  
started to appear for top quark
pair production already ( gluon 
pdfs,  stealthy stops etc.)
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The next big thing  

The next big problem with NNLO computations are 
virtual corrections to multi-jet processes.  Both, reduction 
to and evaluation of master integrals, are difficult and will 
require new ideas.

Even with traditional methods for loop computations, we 
see significant differences between NLO and NNLO. 
Indeed, at NLO  Passarino-Veltman reduction is algebraic 
but at NNLO no algebraic reduction is possible and 
integration-by-parts technique is needed for a complete 
solutions.

We should expect similar issues with extensions of OPP 
to two-loops -- parametric integration of spurious terms 
is the key  at NLO but  ``real’’ integration will likely be 
needed at NNLO.

Indeed, recent attempts to extend the on-shell methods 
and the OPP procedure to compute two-loop diagrams 
for multi-jet production showed significant increase in the 
number of irreducible scalar products.  Planar N=4 SYM 
remains a spectacular exception  but it is not so clear how 
to benefit from it for N=0.
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FIG. 3: Comparison of the NLO corrections to the four-jet
rate between the numerical calculation and an analytic calcu-
lation. The error bars from the Monte Carlo integration are
shown and are almost invisible.

ycut
N4

c

8
A5,lc

N5
c

16
B5,lc

0.002 (5.0529 ± 0.0004) · 103 (4.275 ± 0.006) · 105

0.001 (1.3291 ± 0.0001) · 104 (1.050 ± 0.026) · 106

0.0006 (2.4764 ± 0.0002) · 104 (1.84± 0.15) · 106

ycut
N5

c

16
A6,lc

N6
c

32
B6,lc

0.001 (1.1470 ± 0.0002) · 105 (1.46± 0.04) · 107

0.0006 (2.874± 0.002) · 105 (3.88± 0.18) · 107

ycut
N6

c

32
A7,lc

N7
c

64
B7,lc

0.0006 (2.49± 0.08) · 106 (5.4± 0.3) · 108

TABLE I: Perturbative coefficients for the five-jet rate, six-jet
rate and seven-jet rate.

the number of final state partons to which our method
can be applied. The practical limitations arise from the
fact that the number of evaluations required to reach a
certain accuracy increases with n. This behaviour is al-
ready present at the Born level and not inherent to our
method. Altogether, the calculation of the seven-jet rate
takes a few days on a cluster with 200 cores.

CONCLUSIONS

In this letter we reported on NLO corrections in the
leading colour approximation for jet rates in electron-

Born
Insertion
Virtual

CPU time

n

C
PU

tim
e
[m
s]

765432

10

1

0.1

0.01

FIG. 4: CPU time required for one evaluation of the Born
contribution, the insertion term and the virtual term, respec-
tively, as a function of the number of the final state partons
n. The times are taken on a single core of a standard PC.

positron annihilation up to seven jets. The calculation
is based on a new and powerful method, where the loop
integration is performed numerically. To the best of our
knowledge this is the first time that physical observables
depending on a one-loop eight-point function have been
calculated. We are planning to extend this method to
hadron-hadron collisions and to include all terms in the
colour expansion.
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The next big thing  

An interesting (and largely forgotten) alternative  is 
provided by  numerical methods.

Weinzierl et al. showed that one can formulate the 
integration procedure directly in momentum space, 
both at one-loop and beyond.

One-loop integrals are made finite by subtraction 
terms and contour deformation.

At one-loop,  the method was used to obtain large-N 
cross-sections  for the production of up to seven  (!) 
jets in electron-positron annihilation.

Becker, Goetz, Reschle, Schwan, Weinzierl
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Observable Expected Error (experiment � theory)
LHC at 14 TeV with 300 fb�1

�(gg) · BR(��) 0.06 � 0.13
�(WW ) · BR(��) 0.15 � 0.10
�(gg) · BR(ZZ) 0.08 � 0.08
�(gg) · BR(WW ) 0.09 � 0.11
�(WW ) · BR(WW ) 0.27 � 0.10
�(gg) · BR(⌧+⌧�) 0.11 � 0.13
�(WW ) · BR(⌧+⌧�) 0.15 � 0.10
�(Wh) · BR(bb) 0.25 � 0.20
�(Wh) · BR(��) 0.24 � 0.10
�(Zh) · BR(bb) 0.25 � 0.20
�(Zh) · BR(��) 0.24 � 0.10
�(tth) · BR(bb) 0.25 � 0.20
�(tth) · BR(��) 0.42� 0.10
�(WW ) · BR(invisible) 0.2 � 0.24

Table 1: Input data for the fits to Higgs couplings from LHC measurements. See the
discussion in the Appendix.
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Figure 2: Comparison of the capabilities of LHC and ILC for model-independent measure-
ments of Higgs boson couplings. The plot shows (from left to right in each set of error bars)
1 � confidence intervals for LHC at 14 TeV with 300 fb�1, for ILC at 250 GeV and 250 fb�1

(‘ILC1’), for the full ILC program up to 500 GeV with 500 fb�1 (‘ILC’), and for a program
with 1000 fb�1 for an upgraded ILC at 1 TeV (‘ILCTeV’). More details of the presentation
are given in the caption of Fig. 1. The marked horizontal band represents a 5% deviation
from the Standard Model prediction for the coupling.
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The Higgs boson  signal:  precision target

The precision with which the Higgs couplings will be measured at the LHC are  estimated to 
be limited by comparable theoretical and experimental uncertainties.  It is hard ( for me) to 
argue about experimental errors and how they will evolve. However, it is perfectly clear that 
progress in theoretical understanding of hadron collider data in the past decade was truly 
remarkable and, if it continues at a similar pace,   high-precision predictions for very 
sophisticated final states will be available in ten years from now.  This will be beneficial for 
Higgs couplings extraction at the LHC.
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• Perturbative QCD provides good description of the wealth of data on  
hard  scattering  processes collected at the Tevatron and the LHC.

• Important for this success is the recent progress with NLO QCD 
technology  as it allows us to make realistic and accurate  description of  
complex final states. 

• Same progress drives theoretical developments in matching fixed order 
computations to parton showers and merging theoretical predictions for 
various jet multiplicities.

•  A working technology to perform  complex NNLO  QCD computations 
finally appeared. We now have time  to consolidate  the NNLO technology 
and move  on to NNLO phenomenology.

Conclusions

All the developments in perturbative QCD that so many people worked on  diligently 
through the past decade are becoming key for detailed understanding the properties 

of the Higgs boson and for searching  for clues about BSM physics in the very 
Standard Model-like  data .
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