

ATLAS Luminosity Measurements

Kristof Kreutzfeldt Justus-Liebig-Universität Gießen

On behalf of the ATLAS Collaboration

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung Latsis Symposium Zürich 03. June – 06. June 2013

Helmholtz Alliance

Luminosity in 2011 and 2012

• First LHC running period concluded in 2013 with **RECORDS** in luminosity

- Delivered Luminosity in 2011: $\int L dt = (5.61 \pm 0.10) fb^{-1}$
- Delivered Luminosity in 2012: $\int L dt = (23.3 \pm 0.84) fb^{-1}$ (preliminary)
- Luminosity measurements played a major role in the Higgs boson discovery

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults

Luminosity Measurement

Observed average number of inelastic interactions per bunch crossing

> visible $\sigma_{inel} \rightarrow calibration of$ absolute luminosity scale

n_b: Number of colliding bunch pairs f_r: Revolution frequency (f_{LHC} = 11245.5 Hz)

Strategy:

- Several detectors and algorithms to measure μ_{vis} via inelastic rate
- \bullet Calibration of absolute luminosity scale by determining σ_{vis}
 - → beam separation scans
- Consistency of algorithms → systematic uncertainties

$$P_{EventOR}(\mu_{vis}^{OR}) = \frac{N_{OR}}{N_{BC}} = 1 - \exp(-\mu_{vis}^{OR})$$

Luminosity Detectors

Bunch-by-bunch luminosity:

- LUCID
 - Dedicated Luminosity Monitor
 (5.6 < |η| < 6)
- Beam Condition Monitor (BCM)
 - Diamond sensors (|η| = 4.2)
 - Horizontal and vertical pairs
- Inner detector system
 - Primary vertex counting
 (|η| < 2.5)
 - Special conditions needed

Bunch-blind luminosity:

- Calorimeter currents
 - TileCal PMT (|η| < 1.7)
 - FCal HV (3.2 < |η| < 4.9)</p>

Diamond detectors

Beam separation scans

$$\mathscr{L}=n_{b}f_{r}n_{1}n_{2}\iint\rho_{1}(\boldsymbol{x},\boldsymbol{y})\rho_{2}(\boldsymbol{x},\boldsymbol{y})d\boldsymbol{x}d\boldsymbol{y}=\frac{n_{b}f_{r}n_{1}n_{2}}{2\pi\Sigma_{x}\Sigma_{y}}$$

- Proposed by van der Meer
- Measure specific interaction rate for several beam separations

 Σ_x , Σ_y : convolved beam widths $n_1 n_2$: bunch population product ρ_1 , ρ_2 : normalized particle density in transverse plane

Separation scans in practice

Luminosity from scan and rate:

$$\Rightarrow \sigma_{vis} = \frac{\mu_{vis}^{MAX}}{n_1 n_2} \frac{2\pi \Sigma_x \Sigma_y}{n_1 n_2}$$

- From scan data:
 - Convolved beam widths (if gaussian → RMS)
 - Peak interaction rate
- Bunch population product from *external* beam current measurement (LHC group)
- Conditions with relative low number of bunches and peak rate
- Stability of measured σ_{vis} with BCID and different scans → assess uncertainties

Scan stability

- $L_{spec} = L/(n_b n_1 n_2)$
- Up to ≈10% variation by colliding bunch pairs (BCID) due to transverse emittance (yellow band)
- Emittance growth between scans
- Uncertainty: variation between BCIDs and scans
- Good algorithm consistency

Extrapolation

- Calibration for whole data taking periods
 - → long term stability, highest rates, different bunch structure
- (Online) Luminosity from BCMV_EventOR algorithm
- Consistency of algorithms provides data driven uncertainties

Long term stability

- Calibration of σ_{vis} by only few vdM scans → assume stable σ_{vis} over data taking period
- <µ>: average number of interactions of one ATLAS run

- Very small variations in BCM algorithms
- Slow drifts in TileCal and FCal
- Larger variations in 2012 than 2011

µ dependence

- Pile-up effects increase at larger rates
 - \rightarrow linear measurements up to highest μ ?
- apparent <µ> dependence actually time dependence from "ramp up"
- Variation in FCal: systematic non-linear dependence on total luminosity

Systematic uncertainties

Uncertainty source		δL/L		
	2010	2011	2012	
Bunch population product	3.1%	0.5%		
Other vdM calibration uncertainties	1.3%	1.4%	20	vdM calibration
Afterglow correction		0.2%	in the second se	
BCM stability		0.2%		extrapolation
Long-Term stability	0.5%	0.7%		
µ dependence	0.5%	0.5%		
Total	3.4%	1.8%	2.8%	Y

- Uncertainty of bunch population product reduced significantly
- 2012 analysis ongoing → preliminary result as input for winter conferences

Outlook

- Accuracy of luminosity calibration exceeded predictions
- Several luminosity calibrations from first LHC run still ongoing:
 - 2012 p-p; 2011 Pb-Pb; 2013 p-Pb
- New challenges after LS1 with higher energies and interaction rates

Additional calibration method beside vdM scans for the future:

 Measure small angle elastic p-p scattering in the Coulomb-Nuclear interference region with the ALFA detector (special beam optics needed)

Kristof Kreutzfeldt, U. Gießen

Backup

Kristof Kreutzfeldt, U. Gießen

ATLAS detector

Bunch population product

DC Current Transformer

- total current measurement with high accuracy
 two in each beam
- two in each beam

Fast Beam Current Transformer

- bunch-by-bunch current measurement
- two in each beam
- Relative fraction of total current in each BCID from FBCT
- Normalization to overall current scale provided by DCCT

CERN-ATS-Note-2012-026 CERN-ATS-Note-2012-028 CERN-ATS-Note-2012-029

Kristof Kreutzfeldt, U. Gießen

Afterglow

- Likely caused by photons from nuclear de-excitation
- Luminosity background in bunch trains
- Corrected by subtracting luminosity in previous BCID

BCM calibration shifts

Time since center of vdM scan [hours]

- Diamond sensors
- Luminosity scale varies up to 1% right after extended period without beam
- Stable value after several hours of exposure (∫L dt ≈ 5 × 10³⁶ cm⁻²)

- BCMH calibration corrected for this drift
- No net drift for BCMV after several hours
- Additional systematic uncertainty applied

Single run µ dependence

- Shifts of algorithms result from long term stability variations
- Linear response with variations up to 0.5% level