Jet production at the LHC in NNLO QCD

João Pires

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The Latsis Symposium 2013 June 5, 2013

- in collaboration with A. Gehrmann-De Ridder, T. Gehrmann, N.Glover

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INCLUSIVE JET AND DIJET CROSS SECTIONS

- look at the production of jets of hadrons with large transverse energy in
 - inclusive jet events $pp \rightarrow j + X$
 - exclusive dijet events $pp \rightarrow 2j$
- cross sections measured as a function of the jet *p_T*, rapidity *y* and dijet invariant mass *m_{jj}* in double differential form

INCLUSIVE JET AND DIJET CROSS SECTIONS

state of the art:

- dijet production is completely known in NLO QCD [Ellis, Kunszt, Soper '92], [Giele, Glover, Kosower '94], [Nagy '02]
- ▶ NLO+Parton shower [Alioli, Hamilton, Nason, Oleari, Re '11]
- threshold corrections [Kidonakis, Owens '00]

Goal:

• obtain the jet cross sections at NNLO accuracy in double differential form

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_T\mathrm{d}|y|} \qquad \frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{jj}\mathrm{d}y^*}$$

this talk:

► NNLO inclusive jet and dijet cross section (gluons only, leading colour)

 MOTIVATION
 NNLO CALCULATIONS

 0000
 00

ANTENNA SUBTRACTION

NUMERICAL RESULTS 0000000

THEORETICAL VS EXPERIMENTAL UNCERTAINTIES

relative theoretical uncertainties for the inclusive jet production (NLO theory input) [CMS, arXiv:1212.6660]

relative experimental uncertainties for the inclusive jet production [CMS, arXiv:1212.6660]

- ► residual uncertainty due to scale choice at NNLO expected at ≈ few percent level
- ► jet energy scale uncertainty has been determined to less than 5% for central jets → expect steady improvement with higher statistics
- ► theoretical prediction with the same precision as the experimental data → need pQCD predictions at NNLO accuracy

MOTIVATION NNLO C. 000● 00

NNLO CALCULATIONS

ANTENNA SUBTRACTION

NUMERICAL RESULTS

INCLUSIVE JET AND DIJET CROSS SECTIONS

Phenomenological applications with NNLO:

- data can be used to constrain parton distribution functions
- size of NNLO correction important for precise determination of PDF's
- inclusion of jet data in NNLO parton distribution fits requires NNLO corrections to jet cross sections
- α_s determination from hadronic jet observables limited by the unknown higher order corrections

$pp \rightarrow 2j$ at NNLO: gluonic contributions

[Berends, Giele '87], [Mangano, Parke, Xu '87], [Britto, Cachazo, Feng '06] [Bern, Dixon, Kosower '93] [Anastasiou, Glover, Oleari, Tejeda-Yeomans '01],[Bern, De Freitas, Dixon '02]

$$\mathrm{d}\hat{\sigma}_{NNLO} = \int_{\mathrm{d}\Phi_4} \mathrm{d}\hat{\sigma}_{NNLO}^{RR} + \int_{\mathrm{d}\Phi_3} \mathrm{d}\hat{\sigma}_{NNLO}^{RV} + \int_{\mathrm{d}\Phi_2} \mathrm{d}\hat{\sigma}_{NNLO}^{VV}$$

- explicit infrared poles from loop integrations
- implicit poles in phase space regions for single and double unresolved gluon emission
- procedure to extract the infrared singularities and assemble all the parts in a parton-level generator

NNLO IR SUBTRACTION SCHEMES

- sector decomposition: expansions in distributions, numerical integration [Binoth, Heinrich '02], [Anastasiou, Melnikov, Petriello '03]
 - ▶ $pp \rightarrow H$ [Anastasiou, Melnikov, Petriello '04]
 - $pp \rightarrow V$ [Melnikov, Petriello '06]
- ▶ *q*_T-subtraction for colorless high-mass systems [Catani, Grazzini '07]
 - ▶ $pp \rightarrow H$ [Catani, Grazzini '07]
 - ▶ $pp \rightarrow V$ [Catani, Cieri, Ferrera, de Florian, Grazzini '09]
 - ▶ *pp* → *VH* [Ferrera, Grazzini, Tramontano '11]
 - ▶ $pp \rightarrow \gamma \gamma$ [Catani, Cieri, de Florian, Grazzini '11]
- sector decomposition combined with subtraction [Czakon' 11], [Boughezal, Melnikov, Petriello '11]
 - ▶ $pp \rightarrow t\bar{t}$ [Baernreuther, Czakon, Fiedler, Mitov '13]
 - ▶ *pp* → *Hj* (gluons only) [Boughezal, Caola, Melnikov, Petriello, Schulze '13]
- antenna subtraction [Gehrmann-De Ridder, Gehrmann, Glover '05]
 - $e\bar{e} \rightarrow 3j$ [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich '07], [Weinzierl 08]
 - ▶ $pp \rightarrow 2j$ (gluons only) [Gehrmann-De Ridder, Gehrmann, Glover, JP '13]

・ロト・日本・モート モー うへぐ

ION NNLO CALCULATIONS

ANTENNA SUBTRACTION

NUMERICAL RESULTS 0000000

NNLO ANTENNA SUBTRACTION

$$\begin{split} \mathrm{d}\hat{\sigma}_{\mathrm{NNLO}} &= \int_{\mathrm{d}\Phi_4} \left(\mathrm{d}\hat{\sigma}_{\mathrm{NNLO}}^{RR} - \mathrm{d}\hat{\sigma}_{\mathrm{NNLO}}^{S} \right) \\ &+ \int_{\mathrm{d}\Phi_3} \left(\mathrm{d}\hat{\sigma}_{\mathrm{NNLO}}^{RV} - \mathrm{d}\hat{\sigma}_{\mathrm{NNLO}}^{T} \right) \\ &+ \int_{\mathrm{d}\Phi_2} \left(\mathrm{d}\hat{\sigma}_{\mathrm{NNLO}}^{VV} - \mathrm{d}\hat{\sigma}_{\mathrm{NNLO}}^{U} \right) \end{split}$$

- $d\hat{\sigma}_{NNLO}^{S}$: real radiation subtraction term for $d\hat{\sigma}_{NNLO}^{RR}$
- $d\hat{\sigma}_{NNLO}^{T}$: one-loop virtual subtraction term for $d\hat{\sigma}_{NNLO}^{RV}$
- $d\hat{\sigma}_{NNLO}^{U}$: two-loop virtual subtraction term for $d\hat{\sigma}_{NNLO}^{VV}$
- Subtraction terms constructed using the antenna subtraction method at NNLO for hadron colliders → presence of initial state partons to take into account
- contribution in each of the round brackets is finite, well behaved in the infrared singular regions and can be evaluated numerically

pp ightarrow 2j at NNLO

[A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP]

Implementation checks (gluons only channel at leading colour):

 subtraction terms correctly approximate the matrix elements in all unresolved configurations of partons *j*, *k*

$$\mathrm{d}\hat{\sigma}_{NNLO}^{RR,RV} \xrightarrow{\forall \{j,k\},\{j\} \to 0} \mathrm{d}\hat{\sigma}_{NNLO}^{S,T}$$

 local (pointwise) analytic cancellation of all infrared explicit ε-poles when integrated subtraction terms are combined with one, two-loop matrix elements

$$\mathcal{P}oles\left(\mathrm{d}\hat{\sigma}_{NNLO}^{RV}-\mathrm{d}\hat{\sigma}_{NNLO}^{T}
ight)=0$$

$$\mathcal{P}oles\left(\mathrm{d}\hat{\sigma}_{NNLO}^{VV}-\mathrm{d}\hat{\sigma}_{NNLO}^{U}
ight)=0$$

- process independent NNLO subtraction scheme
- singularities in intermediate steps cancel analytically
- ► allows the computation of multiple differential distributions in a single program run

NUMERICAL SETUP

[A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP]

- ▶ jets identified with the anti-*k*_T jet algorithm
- jets accepted at rapidities |y| < 4.4
- leading jet with transverse momentum $p_t > 80 \text{ GeV}$
- ▶ subsequent jets required to have at least *p*^{*t*} > 60 GeV
- MSTW2008nnlo PDF
- ► dynamical factorization and renormalization central scale equal to the leading jet p_T ($\mu_R = \mu_F = \mu = p_{T1}$)

NUMERICAL SETUP

[A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP]

- ▶ jets identified with the anti-*k*_T jet algorithm
- ▶ jets accepted at rapidities |*y*| < 4.4
- leading jet with transverse momentum $p_t > 80 \text{ GeV}$
- ▶ subsequent jets required to have at least *p*^{*t*} > 60 GeV
- MSTW2008nnlo PDF
- ► dynamical factorization and renormalization central scale equal to the leading jet p_T ($\mu_R = \mu_F = \mu = p_{T1}$)

Integrated cross section results (gluons only channel) with scale variations

	$\sigma_{incl.jet}^{8TeV-LO}(pb)$	$\sigma_{incl.jet}^{8TeV-NLO}(pb)$	$\sigma_{incl.jet}^{8TeV-NNLO}(pb)$
$\mu = 0.5 p_{T1}$	$(12.586 \pm 0.001) \times 10^5$	$(11.299 \pm 0.001) \times 10^5$	$(15.33 \pm 0.03) \times 10^5$
$\mu = p_{T1}$	$(9.6495 \pm 0.001) \times 10^5$	$(12.152 \pm 0.001) \times 10^5$	$(15.20 \pm 0.02) \times 10^5$
$\mu = 2.0 p_{T1}$	$(7.5316 \pm 0.001) \times 10^5$	$(11.824 \pm 0.001) \times 10^5$	$(15.21 \pm 0.01) \times 10^5$

► NNLO result increased by about 25% with respect to the NLO cross section

MOTIVATION	NNLO CALCULATIONS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	00	00	000000

INCLUSIVE JET p_T DISTRIBUTION

[A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP]

NNLO effect stabilizes the NLO k-factor growth with *p_T*

(ロ) (型) (注) (注) (注) (三) (0) (0)

MOTIVATIONNNLO CALCULATIONSANTENNA SUBTRACTION00000000

NUMERICAL RESULTS

INCLUSIVE JET p_T DISTRIBUTION

[A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP]

► flat scale dependence at NNLO

INCLUSIVE JET p_T DISTRIBUTION R = 0.7

► double differential inclusive jet *p*^{*T*} distribution at NNLO (gluons only)

double differential k-factors

- NNLO result varies between 25% to 12% with respect to the NLO cross section
- similar behaviour between the rapidity slices

 Image: Image and Image

Sac

 MOTIVATION
 NNLO CALCULATIONS
 ANTENNA SUBTRACTION
 NUMERICAL RESULTS

 0000
 00
 00
 0000000

INCLUSIVE JET p_T DISTRIBUTION R = 0.4

► double differential inclusive jet *p*^{*T*} distribution at NNLO (gluons only)

double differential k-factors

- NNLO result varies between 20% to 5% with respect to the NLO cross section
- similar behaviour between the rapidity slices

Sac

ANTENNA SUBTRACTION

NUMERICAL RESULTS

INCLUSIVE JET p_T DISTRIBUTION

- inclusive jet cross section versus R
- can the NNLO cross section describe data for different values of R simultaneously at low and high jet *p_T*?

EXCLUSIVE DIJET MASS DISTRIBUTION |R| = 0.4

double differential dijet mass distribution at NNLO (gluons only)

double differential k-factors

- NNLO corrections up to 20% with respect to the NLO cross section
- corrections increase slightly for large $y^* = 1/2|y_1 - y_2|$

Sac

CONCLUSIONS

- antenna subtraction method generalised for the calculation of NNLO QCD corrections for exclusive collider observables with partons in the initial-state
- non-trivial check of analytic cancellation of infrared singularities between double-real, real-virtual and double-virtual corrections
- ▶ proof-of principle implementation of the gg → gg contribution to pp → 2j at NNLO in the new NNLOJET parton-level generator

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► computation of multiple differential distributions at NNLO in a single program run → experimentalists input welcome

Future work:

- go beyond gluons only leading colour approximation
- include remaining partonic subprocesses
 - ► 4g2q processes [Currie, Glover, Wells '13]
 - 2g4q processes
 - 6q processes