

Analysis of $B^0 \! \to K^{*0} \mu^+ \mu^-$ at the LHCb Experiment

Latsis Symposium 2013, Zurich, 4th June 2013

[arxiv:1304.6325]

MICHEL DE CIAN, UNIVERSITY OF HEIDELBERG

 $B^0\!\to K^{*0}\mu^+\mu^-$ decay topology

Particle	mass	lifetime ($c au$)
B^0	5279 MeV/ c^2	$491.1~\mu{ m m}$
K^{*0}	892 MeV/ c^2	$pprox 3\cdot 10^{-12}~\mu{ m m}$

*

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$: Rare, but exciting

- Rare decay with \mathcal{B} = $(1.05^{+0.16}_{-0.13}) \times 10^{-6}_{\text{[PDG]}}$
- Decay only possible via penguin- or box diagrams, "new physics" can enter at the same level as SM physics.
- Pseudoscalar \rightarrow Vector-Vector decay: Plenty of observables in the angular distribution.

ANGULAR DISTRIBUTION (I)

• Decay can be fully described by three angles $(\theta_{\ell}, \theta_K, \phi)$ and the dimuon invariant mass (square) q^2 .

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\;\mathrm{d}\cos\theta_K\;\mathrm{d}\phi\;\mathrm{d}q^2} = \frac{9}{32\pi}\sum_{i=1}^9 I_i^{(s,c)}\cdot f(\cos\theta_i,\cos\theta_\ell,\phi).$$

- I_i are function of Wilson-coefficients $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$ and hadronic form-factors.
- In an ideal world, we would fit this expression to the collision data and extract all I_i observables.
- Can construct \mathcal{CP} -symmetric and \mathcal{CP} -antisymmetric observables: $S_i = I_i + \bar{I}_i, A_i = I_i - \bar{I}_i,$

ANGULAR DISTRIBUTION (II)

- In 2011, LHCb reconstructed \approx 900 $B^0 \to K^{*0} \mu^+ \mu^-$ events: Not enough for full angular fit.
- Apply "folding" technique: $\phi \rightarrow \phi + \pi$ for $\phi < 0$. This cancels four terms in the total angular distribution.
- And leaves (neglecting lepton masses and S-wave contributions)

$$\frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} \propto F_L \cos^2\theta_K + \frac{3}{4}(1 - F_L)(1 - \cos^2\theta_K) + F_L \cos^2\theta_K (2\cos^2\theta_\ell) + \frac{1}{4}(1 - F_L)(1 - \cos^2\theta_K)(2\cos^2\theta_\ell - 1) + S_3(1 - \cos^2\theta_K)(1 - \cos^2\theta_\ell)\cos 2\phi + \frac{4}{3}A_{FB}(1 - \cos^2\theta_K)\cos\theta_\ell + A_9(1 - \cos^2\theta_K)(1 - \cos^2\theta_\ell)\sin 2\phi$$

• This expression was fitted to the 1 fb⁻¹ of LHCb data at $\sqrt{s} = 7$ TeV in 2011.

EXPERIMENTAL ASPECTS

- Some experimental details:
 - Dominated by $B^0 \to J\!/\!\psi\, K^{*0}$ and $B^0 \to \psi(2S)K^{*0}$ in two regions: Cut out.
 - Peaking background due to misidentification of particles: Apply vetoes.
 - Select signal events with a BDT.
 - Acceptance of detector distorts angular distribution: Apply event-by-event correction, determined on simulation.
 - Correct for particle ID and efficiency (tracking, trigger, ...)-differences in simulation and collision data.
- Perform a unbinned maximum-likelihood fit to the mass distribution and to $(\theta_\ell, \theta_K, \phi)$ in 6 bins of q^2 .

Distribution of events in q^2

Results

*

15

COMPARISON WITH OTHER EXPERIMENTS

Belle: [PRL 103 (2009)] BaBar: [PRD 86 (2012)]

15

10

Measuring the zero-crossing point of $A_{FB}(I)$

- Zero-crossing point of A_{FB} is a very clean measurement, as the form factors cancel (to first order).
- Zero-crossing point was extracted using "unbinned counting" technique: Make a 2D unbinned likelihood fit to (q^2 , mass) for "forward" and "backward" events (with respect to $\cos \theta_{\ell}$).
- Extract $A_{FB} = \frac{N_F \cdot PDF_F(q^2) N_B \cdot PDF_B(q^2)}{N_F \cdot PDF_F(q^2) + N_B \cdot PDF_B(q^2)}$

Measuring the zero-crossing point of A_{FB} (II)

- Standard Model theory predicts zero-crossing in 4.0 - 4.3 $\,{\rm GeV}^2/c^4$ (central values)

[JHEP 1201 (2012) 107][Eur. Phys. J. C41 (2005), 173][Eur. Phys. J. C47 (2006) 625]

- LHCb result: $4.9\pm0.9\,{
m GeV}^2/c^4$

CLEAN OBSERVABLES

- Goal is to measure (more) observables which have a "clean" prediction, i.e. are not affected by form-factor uncertainties.
- Two examples:

•
$$S_3 = \frac{1}{2}(1 - F_L)A_T^{(2)}$$

- $A_{FB} = \frac{3}{4}(1 F_L)A_T^{(Re)}$
- Can re-express the angular distribution using these replacements and determine ${\cal A}_T^{(2)}$ and ${\cal A}_T^{(Re)}.$
- Caveat: F_L and $A_T^{(2)}/A_T^{(Re)}$ both vary with q^2 . Result presented is a weighted average of the transverse observables.

 $A_T^{(2)}$ and $A_T^{(Re)}$

*

More (clean) variables

- Angular distribution has 8 independent observables in total. Have only measured 4 of them due to folding, measure the remaining ones as well.
- Instead of measuring the S_i observables one can choose basis: $\left\{\frac{d\Gamma}{dq^2}, F_L, P_1, ..., P_6\right\}$, with $P_1, ..., P_6$ clean observables.

•
$$P_1 = A_T^{(2)}, P_2 = A_T^{(Re)}$$

- Goal is to measure all observables of this basis.
- From an experimental point it's advantageous to replace: P_4, P_5, P_6 with: P_4', P_5', P_6'

SUMMARY

- Performed an angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ and measured the observables F_L , S_3 , A_{FB} and A_9 (and $A_T^{(2)}$ and $A_T^{(Re)}$). All agree with SM predictions.
- Measured the zero-crossing point of A_{FB} .
- The future is the determination of the "remaining" information, using observables which are less affected by form-factor uncertainties.

fin

The LHCb detector

- *b*-quarks are produced in pairs, mostly in the forward- and backward region.
- LHCb has excellent tracking capabilities ($\Delta p/ppprox 0.4-0.6$ %)...
- ... and very good particle identification: K and π can be separated up to $p\approx 100\,{\rm GeV}/c.$

15

- Collected \approx 1 fb $^{-1}$ in 2011 and \approx 2.2 fb $^{-1}$ in 2012

DIFFERENTIAL BRANCHING FRACTION

BDT INPUT VARIABLES

- the B^0 pointing to the primary vertex, flight-distance and IP χ^2 with respect to the primary vertex, p_T and vertex quality (χ^2);
- the K^{*0} and dimuon flight-distance and IP χ^2 with respect to the primary vertex (associated to the B^0), p_T and vertex quality (χ^2);
- the impact parameter χ^2 and the $\Delta LL(K \pi)$ and $\Delta LL(\mu \pi)$ of the four final state particles.

