Beyond the Standard Model at the LHC

Henri Bachacou

on behalf of the ATLAS and CMS Collaborations

Latsis Symposium 3-6 June 2013 Zurich, Switzerland

BSM at the LHC: Introduction

- The past two years have been extremely exciting
- Context for searches Beyond the Standard Model:
 - → A Standard Model-looking Higgs boson has been discovered!
 - → No sign of SUSY yet
 - → Exotic searches have never been more relevant
- In this talk I will focus on a selection of non-SUSY BSM searches at ATLAS and CMS
 - → Focus on latest results based on (a fraction of) 8 TeV 2012 data
 - → Many analyses are still work-in-progress
- Not showing all results from both experiments. Complete information about all results:
 - → CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
 - → ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic

The Large Hadron Collider (LHC)

- pp collisions:
 - → 5 fb⁻¹ at \sqrt{s} = 7 in 2011
 - → 20 fb⁻¹ at \sqrt{s} = 8 TeV in 2012
- LHC has performed extremely well in 2012:
 - → 7.7 10³³ /cm²/s peak luminosity
 - → More than 20 fb⁻¹ delivered to both experiments
- 50 ns bunch spacing
- Pile-up: ~ 20 collisions / crossing

20

0

5

10

15

20

25

Mean Number of Interactions per Crossing

30

35

40

45

The ATLAS and CMS Detectors: same goals, different choices

- 3.8T solenoid containing calorimeters
 - Silicon tracker: $\sigma(p_T)/p_T \sim 15\%$ at 1TeV
- EM cal: homogeneous Lead-Tungstate crystal, $\sigma_{\rm E}/{\rm E} \sim 3\%/\sqrt{\rm E[GeV]} \oplus 0.5\%$
- HAD cal: Brass-scint., $\geq 7\lambda_0$ $\sigma_E/E \sim 100\%/\sqrt{E[GeV]} \oplus 5\%$

Iron return yoke muon spectrometer

- 2T solenoid inside calorimeters
- Tracker: Silicon + TRT (incl. electron ID)
- EM cal: Longitudinally segmented Lead-Ar: $\sigma_{\rm E}$ /E ~ 10%/√E[GeV] ⊕ 0.7%
- HAD cal: Fe-scint + Cu-Ar, $\ge 11\lambda_0$ $\sigma_E/E \sim 50\%/\sqrt{E[GeV]} \oplus 3\%$
- Air-toroid muon sp.: $\int \sqrt{B.dl} = 1$ to 7 T.m

Why look "beyond" the Standard Model?

- The Standard Model is a (very) effective theory that breaks down at a certain scale
 - → Hierarchy: quadratic divergence of the Higgs mass, extremely fine-tuned
 - → What is the underlying nature of EWSB?
- Dark Matter
 - \rightarrow cannot be explained by SM
- BSM models attempt to solve the SM limitations:
 - → SUSY

 \rightarrow

- → Extra-dimensions
- → Compositeness and Strong Interactions

A very long list of models x signatures

A very long list of models x signatures

- Many extensions of the SM have been developed over the past decades:
- Supersymmetry^{*}
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness
- 4th generation (t', b')⁴
- LRSM, heavy neutrino ,
- What else?

(for illustration only)

- 1 jet + MET
 jets + MET
 1 lepton + MET
 Same-sign di-lepton
 Dilepton resonance
 Diphoton resonance
 Diphoton + MET
 Multileptons
 Lepton-jet resonance
- Lepton-photon resonance
- Gamma-jet resonance
- Diboson resonance
- Z+MET
- W/Z+Gamma resonance
- Top-antitop resonance
- Slow-moving particles
- Long-lived particles
- Top-antitop production
- Lepton-Jets
- Microscopic blackholes
- Dijet resonance
- What else?

A complex 2D problem

Experimentally, a signature standpoint makes a lot of sense:

- → Practical
- → Less modeldependent
- → Important to cover every possible signature

Grand summary:

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

	Large ED (ADD) : monojet + E _{7,miss}	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]	4.37 TeV M	_D (δ=2)
	Large ED (ADD) : monophoton + E _{T,miss}	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M _D (δ=2)	ATI AS
ns	Large ED (ADD) : diphoton & dilepton, m _{yy / II}	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4.18 TeV M _S	(HLZ δ=3, NLO) Preliminary
SíO.	UED : diphoton + $E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.40 TeV Compact. scale R	
<i>u</i> c	S ¹ /Z ₂ ED : dilepton, m _{il}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	4.71 TeV	4 _{κκ} ~ R ⁻¹
RS1 : dilepton, m ₁ <u>L=20 fb⁻¹, 8 TeV [ATLAS-CONF-2013-017]</u>		2.47 TeV Graviton m	mass $(k/M_{\rm Pl} = 0.1)$	
ijo	RS1 : WW resonance, m _{T, Mix}	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 Tev Graviton mass (k/Mp	$h_{\rm p} = 0.1$
g	Bulk RS : ZZ resonance, m	L=7.2 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-150]	850 Gev Graviton mass (k/M _{PI} = 1.0	D_{1} $\int Ldt = (1 - 20) f D$
xt	RS g \rightarrow tt (BR=0.925) : tt \rightarrow I+jets, m	L=4.7 fb ⁻¹ , 7 TeV [1305.2756]	2.07 TeV g _{KK} mass	(s = 7, 8 TeV
Ш	ADD BH $(M_{TH}/M_D=3)$: SS dimuon, $N_{ch. part.}$	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV $M_D(\delta=6)$	10 1,0 101
	ADD BH $(M_{TH}/M_D=3)$: leptons + jets, Σp	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV M _D (δ=6)	12
	Quantum black hole : dijet, F (m)	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	4.11 TeV M _D	(8=6)
_	qqqq contact interaction : $\chi(m)$	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	7.6	TeV A
0	qqii Ci: ee & μμ, m	L=5.0 fb ⁻¹ , 7 TeV [1211.1150]		13.9 TeV A (constructive int.)
	uutt CI: SS dilepton + jets + $E_{T,miss}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	3.3 TeV A (C=1	1)
	2 (SSM): m _{ee/μμ}	L=20 fb", 8 TeV [ATLAS-CONF-2013-017]	2.86 TeV Z' mass	
~	Z' (SSM) : m _{et}	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass	
	\angle (leptophobic topcolor) : tt \rightarrow l+jets, m	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052]	1.8 TeV Z' mass	
	VV (SSIVI): $M_{T,e/\mu}$	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W mass	
	$VV (\rightarrow tq, g - 1) \cdot m_{tq}$	L=4.7 fb , 7 TeV [1209.6593]	430 GeV VV' mass	
	$VV_R (\rightarrow ID, LRSIVI) . m_{tb}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]	1.84 TeV W' mass	
Q	Scalar LQ pair (β =1) : kin. vars. in eejj, evjj	L=1.0 fb , 7 TeV [1112.4828]	660 GeV 1 gen. LQ mass	
L (Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2" gen. LQ mass	
	Scalar LQ pair (p=1) : kin. vars. in ttj, tvj	L=4.7 fb , 7 TeV [1303.0526]	534 GeV 3 gen. LQ mass	
New quarks	4" generation : t't \rightarrow WbWb 4th generation : b'b' \rightarrow SS dilepton + jets + E	L=4.7 fb , 7 TeV [1210.5468]	656 Gev L mass	
	$\frac{1}{T,\text{miss}}$	L=14.3 fb ⁻ , 8 TeV [ATLAS-CONF-2013-051]	720 GeV D'mass	
	Vector-like quark : LL→ Ht+X	L=14.3 fb , 8 TeV [ATLAS-CONF-2013-018]	790 Gev T mass (Isospin doublet)	
	Excited quarks : v-let resonance m	L=4.6 fb , 7 lev [ATLAS-CONF-2012-137]	1.12 Tev VLQ mass (charge - 1/	$s_{q0} = v/m_{Q}$
it.	Excited quarks : / jet resonance, // vjet	L=2.1 fb , 7 lev [1112.3580]	2.46 TeV q mass	2000
XC	Excited quarks : dijet resonance, m	L=13.0 fb , 8 TeV [ATLAS-CONF-2012-148]	3.84 lev q" II	lass
Шæ	Excited b quark . W-i resonance, m	L=4.7 fb ⁻¹ , 7 TeV [1301.1583]	870 GeV D" mass (lent-handed coup	(*)
	Techni hadrons (LSTC) ; dilenton m	L=13.010 ,8 TeV [ATLAS-CONF-2012-146]		(10(1))
	Techni-hadrons (LSTC) : WZ resonance (WII) m	L=5.0 fb , 7 lev [1209.2535]	$p_{\gamma} \omega_{\tau} \operatorname{mass}(m(p_{\gamma}) \omega_{\tau}) = m(\pi) + m(\pi)$	$m_{\rm T} = m_{\rm W}^{(2)}$
	Maior poutr (LDSM, po mixing) : 2 log + ioto	L=13.0 fb , 8 TeV [ATLAS-CONF-2013-015]	$\frac{13-013}{2000} = \frac{12000}{1000} p_{T} (13000 (m(p_{T}) - m(n_{T}) + m_{W}, m(a_{T}) - 1.1m(p_{T}))$	
\square Heavy lepton N^{\pm} (type III economy) : 7.1 reconcerce		L=2.1 fb / 1eV [1203.5420] L=2.1 fb / 1eV [1203.5420] L=0.055 V = 0.063 V = 0.051 V = 0.051 V = 0.053		
÷ TE	H^{\pm} (DY prod BR($H^{\pm} \rightarrow \parallel)=1$): SS ee (uu) m	$1 = 0.003, v_{\mu} = $		
Color octet scalar : dijet resonance m		4 =4.7 fb ; 7 lev [1210.5070] 4		200 000
Multi-charged particles (DV prod.) : highly ionizing tracks $(-4.4)^{-7}$ 7 by (130) 5272) 490 GeV mass ($ a = 4.6$)				ice maaa
Magnetic monopoles (DV prod.) : highly ionizing tracks. (=2.0 th ⁻¹ 7 TeV (1207 6414) 867 GeV mass				
		10-1	1	10 10 ²
		10	I	10 10
*0	a colorian of the qualleble mass limits on new states of	ahanamana ahawa		Mass scale [TeV]

H. Bachacou, Irfu CEA-Saclay

Outline

<u>Heavy Resonances</u>

- → Dilepton
- → Dijet
- → Top-Antitop

- <u>4^{^b</sub> generation and</u> <u>heavy "quarks"</u></u>}
 - → Vector-like quarks

Long-lived particles and more exotic final states

- → Stopped particles
- → Exotic Higgs decays

Outline

<u>Heavy Resonances</u>

- → Dilepton
- → Dijet
- → Top-Antitop

→ Vector-like quarks

Long-lived particles and more exotic final states

- → Stopped particles
- → Exotic Higgs decays

Search for Heavy Resonance

Predicted by numerous extensions of the Standard Model:

- → Heavy gauge boson(s) Z' (W'): GUT-inspired theories, Little Higgs
- → Kaluza-Klein excitations: Randall-Sundrum extra-dimensions
- Experimental challenge: understand detector performance (resolution, efficiency) for a signal with (almost) no control sample at very high momentum → confidence in alignment, simulation, etc...

Search for Heavy Resonance: dilepton channel

Dimuon channel:

- → 30 µm muon spectrometer alignment critical (ATLAS)
- → Resolution 10-15% at $p_T = 1 \text{ TeV}$
- Dielectron channel:
 - → Excellent resolution: < 2% at high momentum</p>
 - → Poor charge measurement → no charge requirement
- No discrepancy from SM Drell-Yan (both ATLAS and CMS)

Search for Heavy Resonance: dilepton channel

H. Bachacou, Irfu CEA-Saclay

Search for Heavy Resonance: dilepton channel

- Sequential SM: assume Z' with same couplings as SM Z
- **Randall-Sundrum KK graviton**

Search for Heavy Resonance: W' \rightarrow Iv

- W': the charged equivalent of the Z'
- Bulk-RS: excited KK W
- Final state: 1 lepton + Missing E_T
- Look for Jacobian peak in transverse mass:

$$m_T = \sqrt{2p_T \not\!\!\!E_T (1 - \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$$

Search for Heavy Resonance: $W' \rightarrow Iv$

- W': the charged equivalent of the Z'
- Bulk-RS: excited KK W
- Final state: 1 lepton + Missing E_{T}
- Look for Jacobian peak in transverse mass:

$$m_T = \sqrt{2p_T \not\!\!\!E_T (1 - \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$$

Search for Heavy Resonance: W' \rightarrow Iv

- W': the charged equivalent of the $\underline{\underline{g}}$
- Bulk-RS: excited KK W
- Final state: 1 lepton + Missing E_{T}
- Look for Jacobian peak in transverse mass:

$$m_T = \sqrt{2p_T \not\!\!\!E_T (1 - \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$$

Sequential SM: m(W') > 3.35 TeV at 95% C.L.

Muon channel

[CMS PAS EXO-12-060]

- W'/Z', excited quarks, strong gravity
- Look for resonance above phenomenological fit of the data:
- ATLAS versus CMS analysis in a nutshell:
 - → 1-jet triggers E_T~350 GeV vs H_T/m(jj) at HLT
 - → anti-k_T R=0.6 jets vs wide jets
 (R~1.1)
- Both Experiments:
 - → rapidity cuts to enhance central scattering
 - → selection requires m(jj) \gtrsim 1 TeV

- W'/Z', excited quarks, strong gravity
- Look for resonance above phenomenological fit of the data:
- ATLAS versus CMS analysis in a nutshell:
 - → 1-jet triggers E_T~350 GeV vs H_T/m(jj) at HLT
 - → anti-k_T R=0.6 jets vs wide jets
 (R~1.1)
- Both Experiments:
 - → rapidity cuts to enhance central scattering
 - → selection requires m(jj) \ge 1 TeV

 $f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x}$ $x \equiv m_{jj}/\sqrt{s}$ **ATLAS 13 fb⁻¹ @ 8 TeV [CONF-2012-148]** $\int_{10^4}^{10^4} \int_{10^4}^{10^4} \int_{10^4}$

Highest mass dijet event with central jets: m(jj) = 5.15 TeV

H. Bachacou, Irfu CEA-Saclay

Latsis, 3-6/06/2013

Search for Heavy Resonance: b-Jets

CMS Preliminary $L = 19.6 \text{ fb}^{-1}$ Look specifically for decays to dơ/dm_{ii} (pb/GeV) 2 b-tags Data bottom quarks (bb) or a gluon - Fit and a bottom (bg) $|\eta| < 2.5 \& |\Delta \eta| < 1.3$ M_i>890 GeV, WideJets Require 0, 1, or 2 b-tagged jets 10 b* (1.8 TeV) Z' (2.2 10 **CMS Simulation** CMS Simulation vs = 8 TeV (s = 8 TeV Rate Rate 10 $G \rightarrow b\overline{b}$ 0.9 0.9 |η|<2.5, |Δ η|<1.3 ---- 0-tao G (2.8 TeV) 10 Tagging Tagging 0.8F 0.8 Wide Jets Z' (3.2 TeV) 10⁻⁸ ---- 2-tag CSVL 0.7 0.7 Data-Fit)/o_{Dati} $G \rightarrow q\overline{q} (q=u,d,s,g)$ 0.6 0.6 |η|<2.5, |Δ η|<1.3 ---- 0-tag 0.5E 0.5 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 🔶 1-tag Wide Jets Dijet Mass (GeV) --- 2-taq CSVL 0.4 0.4 G bb dd \rightarrow (-0.3 0.3 0.2 0.2 0. 0.1 1000 2000 3000 4000 2000 3000 4000 1000 Resonance Mass (GeV) Resonance Mass (GeV) this analysis untagged Z' (f_{bb}=0.2) [1.20, 1.68][1.20, 1.68]Observed 95% C.L. excluded masses (TeV): RS G (f_{bb} =0.1) [1.24, 1.57] [1.20, 1.58]

[CMS PAS EXO-12-023]

H. Bachacou, Irfu CEA-Saclay

b*→bq

[1.34, 1.54]

N/A

√s = 8 TeV

Top-antitop Resonance

"Fat" Jets and Jet "Trimming"

- Reconstruct jets with a large cone (R ~ 1 or more), a.k.a. "fat" jets, to encompass all decay products
- Soft radiation (incl. pile-up) important \rightarrow must be removed
- "Trimming":
 - → Run k_t algorithm on clusters within the fat jet
 - → Keep only clusters with pT > pT(fat jet). f_{cut}

Jet Substructure Variables

Typically, for a $W \rightarrow qq$ decay: Last two proto-jets are the two jets from the W: $pT_1 \sim pT_2$ and ΔR are large

Boosted Top Reconstruction (CMS)

Top-antitop Resonance

Top-antitop Resonance Lepton+Jets Channel (ATLAS)

t W

Combine two event selections:

- → "resolved" : standard top reconstruction with narrow jets
- → "boosted" : anti-kT R=1.0, p_T >350 GeV, m>100GeV, $\sqrt{d_{12}}$ >40GeV
- Improve efficiency at high t-tbar mass with:
 - → Lepton "mini-isolation": smaller isolation cone at high momentum
 - → Trigger: Fat Jet trigger (anti-kt jet R=1.0, p_T>240 GeV)
- Thousands of boosted t-tbar events reconstructed

Latsis, 3-6/06/2013

Top-antitop Resonance L+Jets Channel

Top-antitop mass spectra (muon channels):

ATLAS 14.2 fb⁻¹

CMS 19.6 fb⁻¹

Top-antitop Resonance L+Jets Channel

H. Bachacou, Irfu CEA-Saclay

Outline

<u>Heavy Resonances</u>

- → Dilepton
- → Dijet
- → Top-Antitop

→ Vector-like quarks

Long-lived particles and more exotic final states

- → Stopped particles
- → Exotic Higgs decays

4th Generation and Heavy Quarks

- Plain SM 4th generation:
 - → difficult to reconcile with the Higgs observation:
 - → enhance Higgs production cross section, excluded by observed Higgs cross-section

Н

- Beyond 4th generation: Vector-Like Quarks (VLQ) in Composite Higgs theories
 - → Left-handed and right-handed components have identical couplings
 - → Diverse phenomenology. Expect
 large BR for t' → Ht and Zt ;

H. Bachacou, Irfu CEA-Saclay

g 00000

Latsis, 3-6/06/2013

$tH(\rightarrow bb) + X$ analysis (ATLAS)

- t't' pair production with:
 - → at least one t' → tH
 - → one W leptonic decay → Iv
- Also sensitive to t' → tZ
 (Z → bb)
- After standard tt pair event selection, reject top background by requiring:
 - → at least 6 jets
 - → at least 2 b-tags
- Discriminant variable:

$$H_T = \sum_j p_T^j + p_T^l + E_T^{miss}$$

[ATLAS-CONF-2013-018]

$tH(\rightarrow bb) + X$ analysis (ATLAS)

 Assuming singlet VLQ branching ratios: BR(Wb) = 0.5 BR(Ht) = 0.25 BR(Zt) = 0.25 m(t') > 640 GeV 95% CL

$tH(\rightarrow bb) + X$ analysis (ATLAS)

- Assuming singlet VLQ branching ratios: BR(Wb) = 0.5 BR(Ht) = 0.25 BR(Zt) = 0.25 m(t') > 640 GeV 95% CL
- Combining with earlier search for t't' → WbWb: exclude all BR's for m(t') up to ~ 500 GeV

[ATLAS-CONF-2013-018] + [PLB 718, 1284 (2013)]

95% CL exclusion from ATLAS t' \rightarrow Wb search 7 TeV, arXiv:1210.5468

t'_{5/3}t'_{5/3} same-sign (CMS)

H. Bachacou, Irfu CEA-Saclay

Latsis, 3-6/06/2013

b'b' → WtWt same-sign analysis (ATLAS)

- b'b' → WtWt → WWbWWb: 4 W's in the final state
- Event selection:
 - → At least 2 leptons of same-sign
 - → Missing ET > 40 GeV
 - → At least 2 jets, incl. 1 b-tagged
 - → Total transverse energy $H_T > 650 \text{ GeV}$

	ee	$e\mu$	$\begin{array}{c} \mu\mu\\ 2.3\pm1.2 \end{array}$	
Prediction	2.7 ± 0.6	4.4 ± 1.0		
Data	3	10	2	

→ Slight excess in eµ channel, not seen in ee or µµ channels → not significant overall

[ATLAS-CONF-2013-051]

b'b' → WtWt same-sign analysis (ATLAS)

- Assuming BR(b' → Wt) = 100%: m(b') > 720 GeV (expected: 770 GeV)
 ⁹/₁
- Assuming singlet VLQ branching ratios:
 - BR(Wt) ~ 0.5 BR(Hb) ~ 0.25 BR(Zb) ~ 0.25 **m(b') > 590 GeV 95% CL** (expected: 630 GeV)

[ATLAS-CONF-2013-051]

Outline

<u>Heavy Resonances</u>

- → Dilepton
- → Dijet
- → Top-Antitop

- <u>4^{^b</sub> generation and</u> <u>heavy "quarks"</u></u>}
 - → Vector-like quarks

Long-lived particles and more exotic final states

- → Stopped particles
- → Exotic Higgs decays

Monojets: Large Extra-Dimensions (ADD) and WIMPs

ADD:

- → KK tower of excited gravitons: large ED means small ΔE between states:
 - $\Delta E \sim 1/R \rightarrow continuum$
- → direct production of a KK graviton recoiling against a quark or gluon
- Dark matter pair production
 - → Observe only the Initial State Radiation

Search for Monojets: ADD

- Look for a jet and (almost) nothing else
- Data-driven estimation of:
 - → Instrumental background
 - → Understanding $Z(\rightarrow \nu\nu)$ + jets

H. Bachacou, Irfu CEA-Saclay

Search for Monojets: Dark Matter

Comparison with astroparticle direct searches (effective theory):

H. Bachacou, Irfu CEA-Saclay

وووووووووووو

χ

S 2012 Axial Vecto

CMS 2011 Axial Vector

χ

CDF 2012

SIMPLE 2012

CDMSII 2011

COUPP 2012

Super-K W⁺W

IceCube W⁺W⁻

10²

M_v [GeV/c²

Outline

<u>Heavy Resonances</u>

- → Dilepton
- → Dijet
- → Top-Antitop

- <u>4^{^b</sub> generation and</u> <u>heavy "quarks"</u></u>}
 - → Vector-like quarks

Long-lived particles and more exotic final states

- → Stopped particles
- → Exotic Higgs decays

Long-Lived Particles (LLP)

CMS

(MeV/cm)

18

16

14

Vs = 8 TeV, L = 18.8 fb⁻¹

Data (Vs = 8 TeV)

MC: Q=3 400 GeV/c2 Q=1 400 GeV/c2 Q=2/3 400 GeV/c2

Predicted by:

→ SUSY (R-parity violating or split/compressed mass spectra): stau, or gluino/stop hadronized into R-hadrons

LLP: Stopped Particles Decaying Out-of-Time

- Out-of-time decay of heavy particles stopped in the detector
- Look for signal without collisions:
 - → When no beam in the machine
 - → Between bunch trains

Trigger on:

- → Jet pT > 32 GeV (L1)
- → Veto on BPTX trigger to suppress beam background

LLP: Stopped Particles Decaying Out-of-Time

Out-of-time decay of heavy particles stopped in the detector

Too short-lived

- Look for signal without collisions:
 - → When no beam in the machine
 - → Between bunch trains

Too long-lived to

Higgs Exotic Decay: Decay in the Muon Spectrometer

- Hidden-Valley theories predict a hidden sector coupled to the SM only through some heavy communicator → weakly coupled → long-lived particles
- Ex: $h \rightarrow h_v \rightarrow \pi_v \pi_v \rightarrow 4b$'s
- Life-time of π_v is unknown
- Look for 2 pairs of b-jets appearing outside the calorimeter.
- Sort of b-tagging with the Muon Spectrometer!

Higgs Exotic Decay: Decay in the Muon Spectrometer

- Very high occupancy
- Partial track reconstruction
- Note: punch-through's "well" described by the simulation!
- After final selection: no event observed (exp: 0.03±0.02 ev.)

Tracks caused by jets in Muon Spectrometer

Conclusion: a short (over-simplified) summary

The 8 TeV LHC data have been investigated extensively but still a lot of work in progress

Unfortunately, still no hint of BSM physics in the LHC data...

	Approx. Lower Limit (95% C.L.)
VLQ t' (<u>any</u> BR)	500 GeV
KK gluon → t ī (narrow)	2 TeV
Z' (SSM)	3 TeV
Excited quark	4 TeV

Conclusion: Outlook

- Life with a 125 GeV Higgs boson:
 - \rightarrow Exotic decays: Invisible Higgs and decays to exotic objects
 - → Must consider heavy particle decays to Higgs (e.g. t' \rightarrow tH)
- Experimental challenges as we enter further the Multi-TeV world:
 - → TeV leptons
 - → Boosted objects (W, top)
 - → Trigger: keeping up with high luminosity without neglecting low-mass searches (e.g. jet final states)
 - → Investigate less obvious signatures
- We must be patient (again): the 13 TeV run will open another window of opportunity for discovering physics beyond the Standard Model

Backup

Search for Heavy Resonance: Dijet Angular

- Most BSM signal are expected to be more central than QCD
- Study angular variable as a function of dijet mass
- Consider the two leading jets rapidity in their center of mass:

$$y^* = \pm \frac{1}{2}(y_1 - y_2)$$

Variable chi defined as: 0.15 $\chi \equiv \exp(|y_1 - y_2|) = \exp(2|y^*|)$ as a function of m(jet-jet)
Limit on Quantum Black Holes: 0

Search for Heavy Resonance: Dijet Angular

- Most BSM signal are expected to be more central than QCD
- Study angular variable as a function of dijet mass
- Alternatively, look at:

$$F_{\chi} = \frac{N_{\text{central}}}{N_{\text{total}}}$$

where $N_{central}$ is $|y^*| < 0.6$

Limit on Contact Interaction:
 \$\Lambda > 7.6 TeV at 95% CL
 (expected: 8.2 TeV)

Jet Clustering Algorithms

- Starting point: topological clusters in the calorimeters
- Iterative procedure of merging near-by clusters into bigger ones (a.k.a proto-jets) until convergence
- For all proto-jets and proto-jet pairs, define:

$$\rho_{ij} = \min\left(p_{Ti}^{2p}, p_{Tj}^{2p}\right) \frac{(\Delta R_{ij})^2}{R^2}$$

$$\rho_{iB} = p_{Ti}^{2p}$$

- If ρ_{IJ} is the smallest ρ_{ij} or ρ_i , merge I and J
- If ρ_{l} is the smallest of all ρ_{ij} , it is a jet (and removed from list)

Jet Clustering Algorithms

- Two parameters:
- Parameter R is the analogue of cone side in a cone algorithm
 - → Typicall R ~ 0.4 0.6
 - → Larger R ~ 1.0 ("fat jets") also used for boosted objects
- Parameter p:
 - \rightarrow p = 1: standard k_t algorithm
 - \rightarrow p = 0: C/A algorithm
 - \rightarrow p = -1: anti-k_t algorithm
- m $\rho_{ij} = \min\left(p_{Ti}^{2p}, p_{Tj}^{2p}\right) \frac{(\Delta R_{ij})^2}{R^2}$

$$\rho_{iB} = p_{Ti}^{2p}$$

- Standard in ATLAS: R = 0.4 anti-kt algorithm
 - → But others are used to study boosted objects and jet sub-structure

Jet "Grooming"

- "Pruning":
- Start with a fat jet (R ~ 1 or more)
- Run k_t or C/A algorithm on clusters within the fat jet
- At each step, if merging of two clusters fails, remove cluster with smallest pT

Top-antitop Resonance Lepton+Jets Channel (ATLAS)

- ▶ AKT4: Anti- k_{\perp} (R = 0.4) jets: $p_T > 25$ GeV, $|\eta| < 2.5$
- AKT10: Anti- k_{\perp} (R = 1.0) jets: $|\eta| < 2.0$, $p_T > 350$ GeV, m > 100 GeV, $\sqrt{d_{12}} > 40$ GeV (expect $\sqrt{d_{12}} \approx m_t/2$ for $t \rightarrow bW$)

	resolved	boosted			
trigger	single lepton trigger	fat jet (AKT10) trigger			
leptons	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
₹r	e $^{\pm}$: $ ot\!\!\!/ _{\mathcal{T}} > 30 ext{GeV}, \ \mu^{\pm}$: $ ot\!\!\!\!/ _{\mathcal{T}} > 20 ext{GeV}$				
m_T^W	e $^{\pm}$: $M_{\mathcal{T}}(W) > 30$ GeV, μ^{\pm} : $M_{\mathcal{T}}(W) + \not\!$				
jets	\geq 4(3) jets (if one jet $m_{jet} > 60 \text{GeV}$)	"leptonic jet": AKT4 jet "hadronic jet": AKT10 jet			
b-tag	\geq 1 b-tag using A	KT4 jets ($\varepsilon_{\rm b} = 70\%$)			

$TT \rightarrow WbWb$ analysis

- Final state: lvbbqq (I = e or μ)
- Selection:
 - \rightarrow 1 lepton + ETmiss + 4 jets and b-tagging
 - → Select boosted W → jj from T → Wb
- Reconstruct the t' mass

b'b' → WtWt same-sign analysis (ATLAS)

- b'b' → WtWt → WWbWWb: 4 W's ing the final state
- Event selection:
 - → At least 2 leptons of same-sign
 - → Missing ET > 40 GeV
 - → At least 2 jets, incl. 1 b-tagged
 - → Total transverse energy $H_T > 650 \text{ GeV}$

H. Bachacou, Irfu CEA-Saclay

Black Holes: Multi-Jets, Lepton+Jets, Same-Sign

H. Bachacou, Irfu CEA-Saclay

A Short History of Extra-Dimensions

- <u>1921-26</u>: Kaluza & Klein attempt to unify EM and relativity by adding a dimension to general relativity
 - → Compactification → Kaluza-Klein towers
 - → <u>E = nhc / R</u> (R = ED radius, n integer)
- <u>1998</u> : Large ED (Arkani-Hamed, Dimopoulos, Dvali)
- <u>1999</u>: Warped ED Warped Randall-Sundrum
- Since then: many more...

 $\checkmark M_{Pl}^2 \sim M_D^{2+n} R^n$

 $ds^2 = e^{-2kr_c|\phi|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + r_c d\phi^2$

 $\phi \approx -\phi, \quad |\phi| \leq \pi$

Large Extra-Dimensions (ADD)

- What if gravitation is strong but appears weak because it is "diluted" in extra-dimensions at low energy / large distances?
 - → removes the hierarchy problem
- KK tower of excited gravitons: large ED means small ΔE between states: ΔE ~ 1/R
 - → Experimentally: continuum
- At the LHC, three ways to look for it:
 - → Deviation in DY or dijet spectrum caused by continuum
 - → Monojet/monophoton: graviton production recoiling against quark or photon
 - → Semi-classical black-hole and Quantum Graviation Object

Microscopic Black Holes

- If Gravity becomes strong at TeV → strong enough to produce Microscopic blackholes decaying through Hawking radiation
- Large uncertainty on models due to our ignorance of quantum gravity
- Semi-classical models only for m(B.H.) >> m(threshold)
- A safe bet: decay is democratic and isotropic → Look for (many) jets (and leptons) at high mass

Microscopic Black Holes "multi-object" CMS analysis with 8 TeV data:

H. Bachacou, Irfu CEA-Saclay

Latsis, 3-6/06/2013

Warped Extra-Dimensions (RS)

- One extra-dimension with negative curvature i.e. anti de Sitter metrix
- RS1: Planck brane and TeV brane at the boundaries of the ED
 - → KK graviton tower with $\Delta E \sim 1 \text{ TeV}$
 - → Signature: KK graviton to dilepton or diphoton
- Bulk-RS: all fields propagate in ED and create KK tower.
 - → KK graviton couples to massive particles → large BR to WW, ZZ
 - → KK gluon → ttbar

$$\begin{split} ds^2 &= e^{-2kr_c|\phi|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + r_c d\phi^2\\ \phi &\approx -\phi, \quad \left|\phi\right| \leq \pi \end{split}$$

Model-Independent Searches

- Dedicated searches cannot cover every possible final state
- Complete the spectrum of analyses with model-independent searches
- Two examples:
 - → Inclusive same-sign search
 - → A generic search trying to look all possible final states (that may have been missed by the dedicated analyses)

Model-Independent Searches Inclusive Same-Sign Dilepton

- Inclusive: only requirement is two isolation same-sign leptons
- Look for excess as a function of lepton pair properties, namely dilepton invariant mass

H. Bachacou, Irfu CEA-Saclay

Model-Independent Searches Inclusive Same-Sign Dilepton

 Limit presented in terms of fiducial cross-section limit, i.e. cross-section with detector and event-selection acceptance (as opposed to total cross-section):

- σ_{fid} is (almost) model-independent
- Can turn σ_{fid} into σ_{total} with generator-level information only
- Caveat: not exactly model-independent → must be conservative

Model-Independent Searches Inclusive Same-Sign Dilepton

Darticle-level definition of			95% C.L. upper limit [fb]				
		Mass range	expected	observed	expected	observed	
			$e^{\pm}e^{\pm}$		$\mu^{\pm}\mu^{\pm}$		
acceptance:		M > 15 GeV	$45.0^{+17.3}_{-12.0}$	45.7	$23.4^{+8.6}_{-5.8}$	29.1	
	Electron requirement	Muon requirement	$M > 100 \mathrm{GeV}$	$24.3^{+9.1}_{-7.0}$	25.6	$11.9^{+4.4}_{-2.9}$	14.6
Leading lepton $p_{\rm T}$	$p_{\rm T} > 25 { m GeV}$	$p_{\rm T} > 20 { m GeV}$	$M > 200 \mathrm{GeV}$	8.8+3.2	8.1	$4.2^{+1.8}$	6.6
Sub-leading lepton $p_{\rm T}$ Lepton n	$p_{\rm T} > 20 \text{ GeV}$ n < 1.37 or 1.52 < n < 2.47	$p_{\rm T} > 20 \text{ GeV}$ n < 2.5	M > 300 GeV	4 5+1.6	3.9	2 3+0.8	2.5
	cone() 3 /	$p_{\rm T}^{\rm cone0.4}/p_{\rm T} < 0.06$ and	M > 500 Gev	1.0 -1.3	5.2	2.0-0.7	2.0
Isolation	$p_{\rm T}^{\rm conco.5}/p_{\rm T} < 0.1$	$p_{\mathrm{T}}^{\mathrm{cone0.4}} < 4 \mathrm{~GeV} + 0.02 \times p_{\mathrm{T}}$	$M > 400 \mathrm{GeV}$	$2.9^{+1.1}_{-0.9}$	2.3	$1.6^{+0.6}_{-0.5}$	1.7
 Particle-Level Isolation Also search for excess in ++ and separately 				e ⁺ e ⁺		$\mu^+\mu^+$	
			M > 15 GeV	$27.3^{+10.0}_{-7.9}$	23.8	$14.7^{+6.0}_{-3.2}$	14.9
			$M > 100 \mathrm{GeV}$	$16.2^{+6.0}_{-4.8}$	12.4	$8.2^{+3.2}_{-2.4}$	7.7
			$M > 200 \mathrm{GeV}$	$6.6^{+2.8}_{-1.5}$	6.5	$3.4^{+1.5}_{-0.7}$	4.2
			$M > 300 \mathrm{GeV}$	$3.5^{+1.6}_{-0.8}$	2.9	$2.0^{+0.8}_{-0.5}$	2.0
			$M > 400 \mathrm{GeV}$	$2.4^{+1.1}_{-0.6}$	1.7	$1.5^{+0.6}_{-0.3}$	1.7
				e^e^		$\mu^-\mu^-$	
			M > 15 GeV	$24.6^{+8.5}_{-6.8}$	29.1	$11.9^{+4.4}_{-3.4}$	18.0
			$M > 100 \mathrm{GeV}$	$12.7^{+4.6}_{-3.9}$	19.9	$5.8^{+2.2}_{-1.9}$	9.8
			$M > 200 \mathrm{GeV}$	$4.7^{+1.9}_{-1.3}$	4.4	$2.7^{+1.1}_{-0.7}$	4.3
			$M > 300 \mathrm{GeV}$	$2.8^{+1.1}_{-0.8}$	2.7	$1.4^{+0.7}_{-0.3}$	1.7
	$M > 400 \mathrm{GeV}$	$1.8^{+1.0}_{-0.4}$	2.2	$1.2^{+0.4}_{-0.0}$	1.1		

Model-Independent Searches Generic Search

Implemented in many ways in several experiments:

- → Hera
- → D0 Quary and CDF Sleuth
- → CMS Music
- → ATLAS generic search (shown here)
- Basic idea: look for an excess in the entire dataset (!)
- Caveats:
 - \rightarrow Not optimized for any given signal. No complicated reconstruction.
 - → Background estimates not as accurate / trustworthy as in a dedicated search
 - → Very large trial factor: the more signal regions the more likely an excess is a statistical fluctuation → decrease sensitivity

Observation of an excess would trigger additionial studies on additional data
- ATLAS Generic Search
- 655 exclusive channels, as function of number of electrons, muons, photons, jets, b-jets, missing ET

object	jet	b-jet	electron	muon	photon	$E_{ m T}^{ m miss}$
label	j	b	е	μ	γ	ν
lower $p_{\rm T}$ cut	50 GeV	50 GeV	25 GeV	20 GeV	40 GeV	130 GeV

 Background estimated from Monte Carlo with conservative uncertainty on cross-sections

- → QCD: 100% uncertainty
- → Caveat: trust MC to simulate fake leptons

- Use lowest unprescaled trigger in each stream: electron/photon (e/g), muon, jet/MET/tau
- Part of the result for the e/g stream:

- Quantifying an excess: for each signal region, compute the p-value = probability that the background fluctuates at or above the observed number of events
- Take into account trial factor (a.k.a. Look-Elsewhere Effect) with pseudo-experiments (a.k.a. "toys")

- Sanity/Sensitivity check:
 - → Compare with toys in which a signal is injected

Event Classes

H. Bachacou, Irfu CEA-Saclay

Latsis, 3-6/06/2013

LLP: Highly Ionizing Particles (CMS)

- Slow Heavy Particles or High-charge-multiplicity particles: muon-like signature with large dE/dx and slow timing
- Sensitive to 1/3 < |q| < 8 (above: stopped by calorimeter)</p>
- Latest CMS result (full dataset): combine dE/dx from inner tracker and timing from muon spectrometer

H. Bachacou, Irfu CEA-Saclay

Latsis, 3-6/06/2013

LLP: Magnetic Monopole (ATLAS)

LLP: Magnetic Monopole (ATLAS)

- Background estimated from the two uncorrelated variables ("ABCD method")
- 0.011 ± 0.007 background events expected
- 0 event observed

Model-independent limit on fiducial cross-section:

H. Bachacou, Irfu CEA-Saclay

Higgs Exotic Decay: Electron-Jets

- Hidden-Valley theories predict a hidden sector coupled to the SM through some heavy communicator
- Higgs mixing → exotic decay

- Ex: h → cascade → multiple highly collimated electrons (a.k.a. electronjets)
- Could be long-lived

SLAC, 27/03/2012

Higgs Exotic Decay: Electron-Jets

 Hidden-Valley theories predict a hidden sector coupled to the SM through some heavy communicator

Ex: $h \rightarrow cascade \rightarrow$ multiple highly collimated electrons (a.k.a. electronjets)

■ Higgs mixing → exotic decay

H. Bachacou, CEA-Saclay / CERN

SLAC, 27/03/2012